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Plan

1. Mixing rate of linear random walks on Fp.

2. Irreducibility of random polynomials of large degree.



Linear congruential generator
Let p a prime number, Fp the finite field with p elements, and
a ∈ Fp \ {0}.

In 1949 D.H. Lehmer, while
working on the ENIAC,
suggested that successive
iterations of the map

x 7→ ax + 1

on Fp would produce good
pseudo-random numbers.

(e.g. p = 231 − 1, a = 48271, see Knuth 1969 The art of computer
programming)



Random walks on finite fields

In 1987 Chung-Graham-Diaconis (then at Bell Labs) suggested to
add some randomness and consider the Markov chain on Fp:

xn+1 = axn + εn

where εn = ±1 are independent random variables with
Proba(εn = 1) = Proba(εn = −1) = 1

2 and say x0 = 0.

They asked: What time does it take for the Markov chain to
equidistribute?

Theorem (Chung-Graham-Diaconis ’87)
For a = 2 it takes O(log p log log p) for the chain to equidistribute
and this is sharp for Mersenne primes (i.e. p = 2n − 1).
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Mixing time

π(n) ∈ Proba(Fp) := distribution of the chain at time n.

u := the uniform probability measure on Fp, i.e. u(x) = 1
p ∀x .

Definition (Mixing/equidistribution time)
We define the mixing time of the Markov chain as the first time n
such that

‖π(n) − u‖1 <
1

10 .

‖f ‖1 is the `1-norm
∑

x∈Fp |f (x)|, in particular ‖u‖1 = 1.



Random walk on finite fields

Theorem (Chung-Graham-Diaconis ’87)
For a = 2 it takes O(log p log log p) for the chain to equidistribute
and this is sharp for Mersenne primes (i.e. p = 2n − 1).

Remark: It is plausible, yet not known, that O(log p) holds for most
primes p.

Proof: Analyse the Fourier cofficients of π(n) in Fp:

‖π(n) − u‖2
1 6 p‖π(n) − u‖2

2 =
∑

ξ∈F×
p

|π̂(n)(ξ)|2

π̂(n)(ξ) :=
∑
x∈Fp

e2iπ xξ
p π(n)(x) =

n−1∏
i=0

cos(2π 2iξ

p )

. . .
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Random walk on finite fields

Theorem (Chung-Graham-Diaconis ’87)
For a = 2 it takes O(log p log log p) for the chain to equidistribute
and this is sharp for Mersenne primes (i.e. p = 2n − 1).

Remark: The distribution π(n) is exactly the law of the random variable

P(2) mod p

where P ∈ Pn is the random polynomial

P(X ) =
n−1∑
i=0

εn−i X i .

and Pn are the Littlewood polynomials of degree 6 n − 1.

Pn := {P ∈ Z[X ]| deg(P) 6 n − 1, coeffs(P) ∈ {−1, 1}}



Other values of the multiplier a

What about other values of a?, i.e. we want estimates for the
mixing time of the Markov chain

xn+1 = axn ± 1.

Universal lower bound: For any a, mixing time > log2(p).

−→ Indeed at most 2n sites are visited by the chain after n steps.
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−→ same holds when a has small multiplicative order m: mixing time is
in Ωm(p2).
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Other values of the multiplier a

Theorem (Konyagin ’94)
If the multiplicative order m(a) is large enough (≥ log p(log log p)4),
then for all primes p

mixing time . (log p)2(log log p)8.

Remark: Again it is plausible that the mixing time really is in O(log p) for
most primes and for all multipliers a with large enough m(a). However
this touches upon delicate issues −→ it would imply the Lehmer
conjecture.
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Lehmer conjecture

The Mahler measure of a monic polynomial P ∈ Z[X ] is defined as
the modulus of the product of its roots located outside the unit
disc, i.e.

M(P) :=
∏
|θi |>1

|θi |,

when

P(X ) :=
n∏

i=1
(X − θi ).

Conjecture (Lehmer 1930’s)
There is an absolute constant ε0 > 0 such that for every monic
polynomial P ∈ Z[X ], either M(P) = 1 or M(P) ≥ 1 + ε0.
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Relation with Lehmer’s conjecture

Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a ∈ Fp with slow mixing rate.

Easy fact (pigeon hole): If P is irreducible and M(P) < 2, then

∃n,∃P1 6= P2 ∈ Pn s.t. P|P1 − P2.

because
|{Q(α)|Q ∈ Pn}| . M(P)n . 2n

if α is a root of P with M(P) < 2.
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Relation with Lehmer’s conjecture
Motto: putative counter-examples to Lehmer give rise (in reduction
to residue fields) to values of a ∈ Fp with slow mixing rate.

Say that a prime p is δ-bad if there exists a ∈ F×p with
m(a) ≥ (log p)2 such that for some n ≥ 1

δ log p

|Supp(π(n)
a )| = |{P(a) mod p|P ∈ Pn}| 6 pδ.

Theorem (B.-Varjú ’18)
The following are equivalent:

1. There is δ ∈ (0, 1) s.t. almost no prime is δ-bad, i.e.

|{p ≤ x |p is δ-bad}| = ox→+∞(|{p ≤ x}|).

2. The Lehmer conjecture holds.

→ hence mixing in O(log p) for all a with large m(a) implies Lehmer.
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Our results for the mixing time
Theorem (Konyagin ’94)
If the multiplicative order of a is large enough (≥ log p(log log p)4),
then for all primes p

mixing time . (log p)2(log log p)8.

Theorem 1 (B.-Varjú ’19)
Let ε > 0. For all primes p, for at least (1− ε)p values of a

mixing time .ε log p log log p.

Theorem 3 (B.-Varjú ’19: cut-off phenomenon)
Let ε > 0. Assume GRH. Then for almost all primes p, for almost
all a ∈ Fp,

log2(p) 6 mixing time 6 (1 + ε) log2(p).
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Cut-off phenomenon

y -axis: ‖π(n) − u‖1
x -axis: time n



Start of proof of Thms 1 and 3
Observation:

‖π(n)
a ‖22 = P(n)(P1(a) = P2(a))

where P1,P2 are independent random polynomials in Pn.

Averaging over a ∈ Fp: n ' log p

Ea(‖π(n)
a ‖22) = E(n)(#roots of P1 − P2 in Fp)

= pP(n)(P1 = P2) + E(n)(#roots |P1 6= P2)P(n)(P1 6= P2)

I for Thm 1: if P1 6= P2, use #roots 6 n − 1 ' log p and some
further analysis as in C-D-G.

I for Thm 3: if P1 − P2 is irreducible, on average over p

#roots of P1 − P2 ' 1.
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Irreducibility of random polynomials

Consider a random polynomial:

P =
n∑

i=0
ai X i

where, say, the ai ∈ Z are independent and distributed in an
interval [−H,H].

Question: Is P irreducible over Q? What are its irreducible factors?
its Galois group?

Two different regimes:
I fixed degree n, but H → +∞ (known for uniform distribution

since van der Waerden ’30s, Gallagher ’60s)
I H fixed, but n→ +∞ : open problem put forth by Odlyzko

and Poonen (1993).
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Irreducibility of random polynomials
Odlyzko and Poonen ’93 conjectured that most polynomials of the
form

P = 1 +
n∑

i=1
ai X i

where ai ∈ {0, 1} are irreducible.



Irreducibility of random polynomials: our result
Fix H. Assume the ai ’s are independent and distributed according
to a common law on [−H,H] ⊂ Z and set:

P =
n∑

i=0
ai X i

Theorem 2 (B.-Varjú ’18)
Assume GRH. Then with probability at least 1− exp(−O(

√
n

log n ))

P = ΦP̃ where

(i) P̃ is irreducible,
(ii) d0(Φ) = O(

√
n) and Φ is a product of cyclotomic factors,

(iii) moreover the Galois group of P contains Alt(n).

Corollary (Irreducibility of 0, 1 polynomials)
GRH implies the Odlyzko-Poonen conjecture.
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Irreducibility of random polynomials: previous results

• Konyagin (1999) showed that for 0, 1 polynomials

P(P is irreducible )� 1/ log n.

• Bary-Soroker and Kozma (2017) showed that if the distribution
of coefficients is uniform over [1,H] and H is divisible by at least 4
distinct primes, then

P(P is irreducible )→n→+∞ 1.
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Irreducibility of random polynomials: proof method
• It is a sieve argument: we reduce modulo p and average over all
primes p in a window [X , 2X ] with X ' exp(

√
n).

• Prime Ideal Theorem: For any given P ∈ Z[X ] monic,

(1) # irreducible factors of P = Ep(# roots of P mod p) + error

(2) EP(# roots of P mod p)) =
∑
a∈Fp

PP(P(a) = 0) =
∑
a∈Fp

π(n)
a (0)

• Use Konyagin’s (log p)2+o(1) mixing time estimate to conclude
that for n ≥ (log p)2+o(1) we get π(n)

a (0) ' 1
p and hence

E(# roots of P mod p) ' 1.

• GRH is used in controlling the error term in the Prime Ideal
Theorem: O(X 1

2 +o(1) log Disc(P)) (Stark, Odlyzko)
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Roots of −1, 0, 1 polynomials (picture: R. Vanderbei)


