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1. Exercise Sheet

Exercise 1.1: Show that M -valued quadratic forms in the sense of Lecture 1 are equiv-
alently described by

(a) an M -valued symmetric form b : P ⊗ P →M , and

(b) a function q : P →MC2

satisfying the following compatibility:

- q(rx) = (r ⊗ r) · q(x),

- q(x+ y)− q(x)− q(y) = [b(x, y)],

- b(x, x) = q(x) + σ(q(x)).

In particular, convince yourself that the (r ⊗ r) · q(x) is a well-defined expression.

Exercise 1.2: Let P ∈ Proj(R). Show that hyp(P ) is canonically an M -valued quadratic
form.

Exercise 1.3:

(1) Show that there are symmetric forms which are metabolic but not hyperbolic.

(2) Let (P, b, q) be a quadratic form on P . Show that if (P, b, q) admits a quadratic
Lagrangian L, then (P, b, q) ∼= hyp(L).

Hint: For (2), I recommend to do the exercise again after Lecture 2.

Exercise 1.4: Show that Ws(R;M) and Wq(R;M) are abelian groups. Show moreover
that the symmetrization map induces a group homomorphisms

Wq(R;M) −→Ws(R;M).

Exercise 1.5:

(1) Let K be a field with char(K) 6= 2. Show that W−s(K) = 0.

(2) Let K be a field such that the map K× → K×, sending x to x2, is surjective. Show
that Ws(K) ∼= Z/2.

Exercise 1.6: Let K be a field with char(K) 6= 2. Let (W, b) be a unimodular symmetric
bilinear form with b(x, x) = 0 for all x ∈W . Show that W = 0.



Exercise 1.7: Let P ∈ Proj(R). Show that

(1) Ϙ≥0M (P ) = HomR⊗R(P ⊗ P,M)C2 ,

(2) Ϙ≥2M (P ) = HomR⊗R(P ⊗ P,M)C2 , and

(3) ϘbZ(Z) = B(C2), where B(G) is the Burnside ring of a finite group G.

Deduce that Ϙ≥0M = ϘgsM and Ϙ≥2M = ϘgqM .

Exercise 1.8: Show that

(1) L0(C, Ϙ) is an abelian group.

(2) The relation

(X, q) ∼ (X ′, q′)⇔ (X ⊕X ′, q ⊕−q′) is metabolic

is a congruence relation, i.e. an equivalence relation compatible with ⊕ on Pn(C, Ϙ).

(3) Show that L0(C, Ϙ) as defined in Lecture 1 is isomorphic to the L0-group defined in
Yontan’s first lecture.

Exercise 1.9: Show that π0(L(C, Ϙ) is isomorphic to L0(C, Ϙ). Deduce that L(C, Ϙ) is a
grouplike E∞-space and hence a connective spectrum.

Exercise 1.10: Show that the geometric realization of the simplicial space

[n] 7−→ Fm(ρn(C, Ϙ))

is contractible. Hint: Use extension by 0’s to define an extra degeneracy.
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Exercise 2.1: Show that the underlying object of the surgery output associated to the
surgery datum

(S → 0, η ∈ ΩϘ(S))

(this is a surgery datum on the Poincaré object (0, 0 ∈ Ϙ(0) = 0)) is given by

cofib(S
η#−→ ΩDϘ(S)).

Exercise 2.2: Let (X, q) ∈ Pn(Dp(R), Ϙ), where Ϙ is a Poincaré structure sending
Proj(R) to Eilenberg–Mac Lane spectra with only homotopy in degree 0. Let k be the
maximal number i such that π−i(X) 6= 0 and assume that k > 0. Show that

(1) Ϙ(P [−k]) is k-connective (this has nothing to do with k > 0),

(2) The surgery output (X ′, q′) of a map f : P [−k]→ X inducing a surjection on πk and
any nullhomotopy of f∗(q) satisfies that X ′ is (−k + 1)-connective.

Note that by (1), the existence of a null homotopy of f∗(q) is implied by the assumption
k > 0.

Exercise 2.3: Let R and M be as always. Assume Ϙ is an M -compatible Poincaré
structure sending Proj(R) to EM spectra in degree 0. Let (X, q) be a 0-connective Poincaré
object and (L → X, η) a Lagrangian. Show that if L is (−1)-connective, then it can be
represented by a chain complex of finitely generated projectives

0 −→ Q −→ N −→ 0

with Q sitting in homological degree 0.

Exercise 2.4: Let R, M , and Ϙ be as in Exercise 2.3, and let (f : L → X, η) be
a Lagrangian for (P [0], q) with P ∈ Proj(R). In other words, (f : L → P [0], η) ∈
Pn(Met(Dp(R), Ϙ)). Let k be the maximal number i such that π−i(L) 6= 0, assume k > 0,
and assume given a map Q[−k] → L inducing a surjection on π−k with Q ∈ Proj(R).
Consider the diagram

Q[−k] L

0 P [0]

as a morphism in Met(Dp(R), Ϙ), from the left vertical map to the right vertical map.
Show that

(1) The morphism just described admits a refinement of a surgery datum on the Poincaré
object (f : L→ X, η) in Met(Dp(R), Ϙ).

(2) The surgery output is given by a Poincaré object (f ′ : L′ → X, η′) with L′ (−k+ 1)-
connective.



Exercise 2.5: Let R and M be as always and Ϙ an M -compatible Poincaré structure.
Show that

(1) Ϙ is m-quadratic if and only if LϘ(X) is (m + k)-connective whenever DϘ(X) is
k-connective, and

(2) Ϙ is r-symmetric if and only if fib(Ϙ(X) → ϘsM (X)) is (−r − k)-truncated whenever
X is k-connective.

Exercise 2.6: Show that the functor Ω: Dp(R) → Dp(R) extends to an equivalence of
Poincaré ∞-categories

(Dp(R), Ϙ≥mM )
'−→ (Dp(R),Ω2

Ϙ
≥(m+1)
−M ).

Deduce that L(Dp(R), ϘqM ) and L(Dp(R), ϘsM ) are 4-periodic, and 2-periodic R is an F2-
algebra (i.e. 2 = 0 in R).

Exercise 2.7: Show that the groups La,bn (Dp(R), Ϙ) can be equivalently defined by the
following constraints on Poincaré objects (X, q) and Lagrangians (L→ X, η):

(1) X is (−n−a2 )-connective,

(2) L is d−n−1−b2 e-connective, and

(3) fib(L→ X) is b−n−1−b2 c-connective.
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Exercise 3.1: Show that the definition of r-symmetric D-compatible Poincaré structures
on stable∞-categories with t-structure of lecture 3 recovers the notion of r-symmetric M -
compatible Poincaré structures on Dp(R) when R is Noetherian and has finite global
dimension.

Exercise 3.2: Using the theorem about the forget-control map on L-groups for stable∞-
categories with t-structures of lecture 3, prove the following theorem. Let R be Noetherian
of finite global dimension d and let M be an invertible module with involution over R.
Let Ϙ be an M -compatible, r-symmetric Poincaré structure. Then the map

Ln(Dp(R), Ϙ) −→ Ln(Dp(R), ϘsM )

is an isomorphism for n ≥ d− 2r + 3.

Exercise 3.3: Under the assumption of the theorem on surgery for r-symmetric Poincaré
structures of lecture 3, let (X, q) be a Poincaré object for Ωn

Ϙ. Let W = ΩnDϘτ≤−n−1X,
equipped with the canonical map W → X, making use of the equivalence ΩnDϘX ' X
induced by q. Show that

(1) W ∈ C≥−d+1 and that the map W → X refines to a surgery datum on (X, q).

(2) The surgery trace is canonically equivalent to τ≥−n(X) and the surgery output
(X ′, q′) satisfies X ′ ∈ C≥−n.

Exercise 3.4: Let R be a Noetherian ring of global dimension zero, i.e. semi simple, and
let M be an invertible module with involution on R. Show that

L2n+1(D
p(R), ϘqM ) = 0 = L2n+1(D

p(R), ϘsM ).

Exercise 3.5: Let R be commutative, Noetherian of finite global dimension d. Let
M = R and σ = idR be the canonical invertible module with involution. Assume that R
is 2-torsion free. Show that the map

Ln(Dp(R), ϘgqR ) −→ Ln(Dp(R), ϘgsR )

is an isomorphism for n ≥ d+ 1.

Exercise 3.6: Let R be a Dedekind ring whose fraction field has characteristic different
from 2. Show that

Ln(Dp(R), ϘgsR ) ∼=

{
Ln(Dp(R), ϘqR) for n ≤ −3

Ln(Dp(R), ϘsR) for n ≥ −2
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Exercise 4.1: Let R be a Dedekind ring and p a prime ideal. Show that R/p is an
object of Dp(R).

Exercise 4.2: Let R be a Dedekind ring and let p = (π) be a principal ideal. Let
p : R → R/p be the projection, and let p∗ : D(R) → D(R/p) be the right adjoint of p∗.
Show that the Bockstein homomorphism associated to the extension

R
π−→ R

p−→ R/p

induces (by adjunction) an equivalence p∗(R) ' R/p[−1].
Bonus: Can you also show the equivalence p∗(R) ' R/p[−1] for not necessarily prin-

cipal prime ideals?

Exercise 4.3: Let R be a Dedekind ring, K = Frac(R) a global field of characteristic
6= 2, and d the number of dyadic primes of R. Show that

Ls(R) ∼=


Ws(R) for n ≡ 0(4)

(Z/2)d for n ≡ 1(4)

0 for n ≡ 2(4)

Pic(R)/2 for n ≡ 3(4).

Exercise 4.4: Let R be a commutative ring, and let I be an ideal of R which is contained
in the Jacobson radical. Show that the map

Lq2k(R) −→ Lq2k(R/I)

is surjective.

Exercise 4.5: Let R be a ring and let R2 be its 2-completion. Assume that the 2-power
torsion of R is bounded. Show that the following is a pullback diagram.

Lq(R) Lq(R2)

Ls(R) Ls(R2)

Exercise 4.6: Let R be a Dedekind ring, K = Frac(R) a global field of characteristic
6= 2, d the number of dyadic primes. Show that

Lqn(R) ∼=


Wq(R) for n ≡ 0(4)

0 for n ≡ 1(4)

(Z/2)d for n ≡ 2(4)

and that there is an extension

0 −→ coker(Ws(R)⊕Wq(R2)→Ws(R2)) −→ Lq3(R) −→ Ls3(R) −→ 0.



Exercise 4.7: Show that the signature of a unimodular, even symmetric form over Z is
divisible by 8, and that there is a quadratic form of signature 8. Recall that b is even if
b(x, x) ∈ 2Z for all x. Hints:

(1) Show that an even form admits a characteristic element c, i.e. an element such that
b(x, x) ≡ b(x, c)(2) for all x.

(2) Show that the element b(c, c) ∈ Z/8 is well-defined (i.e. independent of the choice of
characteristic element c).

(3) Show that it suffices to prove that b⊕ (1,−1) has signature divisible by 8.

(4) For this form, find a characteristic element c with b(c, c) = sgn(b) and find c′ with
b(c′, c′) = 0.

Exercise 4.8: Show that the map Wq(Z)→Wq(Z/2) is the zero map.

Exercise 4.9: Let R be a Dedekind ring, K = Frac(R) a global field, and assume that
the number of dyadic primes is at least 2. Show that

coker(Ws(R)⊕Wq(R2)→Ws(R2)) 6= 0.

Exercise 4.10: Show that dévissage fails for quadratic L-theory. Hint: Consider the
Dedekind ring Z and the localisation Z[12 ].


