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Algebraic K-theory

For a ring R, the algebraic K-group K0(R) is generated by isomorphism
classes [P] of finitely generated projective R-modules, under the relation
[P ⊕Q] = [P] + [Q].

An algebraic analogue of the complex K-theory group KU0(X ) of a
topological space X .

For R commutative, it captures rich geometric information about
spec(R), related to its Picard group, Chow groups and motivic
cohomology.

For R = Z[G ] a group ring the quotient K0(R)/K0(Z) detects Wall’s
finiteness obstructions for a homotopy compact space with
fundamental group G to be represented by a finite CW-complex.

Can also be defined for sufficiently nice algebraic varieties and schemes
by considering isomorphism classes of vector bundles and enforcing the
relation [F ] = [E ] + [G ] for every short exact sequence

0Ð→ E Ð→ F Ð→ G Ð→ 0

of vector bundles.
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The Grothendieck-Witt group

For a commutative ring R, the Grothendieck-Witt group GWq
0(R) is

defined by isomorphism classes [P,q] of finitely generated projective
modules equipped with a unimodular quadratic form, under the relation
[P ⊕ P ′,q ⊕ q′] = [P,q] + [P ′,q′].

An algebraic analogue of real K-theory group KO0(X ) of a topological
space X .

Is related to algebraic K-theory via a pair of maps

GWq
0(R)

fgt // K0(R)
hyp // GWq

0(R)

[P,q]
� // [P]

� // [P ⊕ P∗,h]

(Knebusch) For a sufficiently nice variety X we can define GWq
0(X ) as

the group generated by classes of vector bundles equipped with a
unimodular quadratic forms under the direct sum relations and the
relations [E ,q] = [L⊕ L∗,h] whenever E is a vector bundle with a
unimodular form q and L ⊆ E is a Lagrangian sub-bundle.
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The Witt group

The cokernel of the map hyp∶K0(R) → GWq
0(R) is known as the Witt

group Wq
(R). One obtains an exact sequence

K0(R)C2 → GWq
0(R) →Wq

(R) → 0

where the first term denotes the C2-orbits of K0(R) with respect to the
action [P] ↦ [P∗], under which the hyperbolic map is invariant.

This sequence is often used to obtain information on GWq
0(R) via the

two outer groups, which are often more accessible.

For example, for R = Z this sequence is split exact with an isomorphism
Wq

(Z) ≅ Z via the signature divided by 8 and an isomorphism
K0(Z) ≅ Z via the rank.

For R a field of characteristic not 2 the group Wq
(R) is highly

accessible via a filtration by Galois Z/2 cohomology groups. This was
the subject of the famous Milnor conjecture, proven by Voevodsky.
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Can we go higher?

K0(R)C2 → GWq
0(R) →Wq

(R) → 0

This sequence looks like it should be continued from the left to a long
exact sequence. But with what groups?

Definition (Quillen)

The algebraic K-theory space

K(R) ∶= Proj≃(R)
grp

is defined as the group completion of the symmetric monoidal groupoid
(considered as an E∞-monoid in spaces) of f. g. projective R-modules.

Definition (Karoubi-Villamayor)

The Grothendieck-Witt space

GW
q
cl(R) ∶= Unimodq,≃(R)

grp

is defined as the group completion of the symmetric monoidal groupoid
of f. g. projective R-modules equipped with a unimodular quadratic form.

Yonatan Harpaz



Can we go higher?

K0(R)C2 → GWq
0(R) →Wq

(R) → 0

When 2 is invertible in R, this sequence extends to a long exact sequence
involving:

The homotopy groups of the homotopy C2-orbits K(R)hC2 .

The homotopy groups of GWq
cl(R), i.e., the higher Grothendieck-Witt

groups.

The quadratic L-groups of R defined by Wall and Ranicki.

L-groups

For a commutative ring R, the quadratic L-groups Lq
n(R) are 4-periodic,

with Lq
0(R) = Wq

(R) the Witt group of quadratic forms over R.
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L-groups

Quadratic L-groups were defined by Wall and Ranicki in the context of
surgery theory. The relevant ring R is then the group ring Zπ1(X ) of the
fundamental group of a given space.

What are quadratic forms over non-commutative rings?

Several proposals in varying levels of generality have been proposed in the
literature (Wall’s anti-structures, Karoubi’s hermitian rings). They can all
be described via the following formalism:

Modules with involution

Let R be an associative ring. A module with involution over R is an
(R ⊗ R)-module M, together with an involution σ∶M →M satisfying
σ((r ⊗ s)m) = (s ⊗ r)σ(m).
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Non-commutative quadratic forms

Modules with involution

Let R be an associative ring. A module with involution over R is an
(R ⊗ R)-module M, together with an involution σ∶M →M satisfying
σ((r ⊗ s)m) = (s ⊗ r)σ(m).

For P ∈ Proj(R):

HomR⊗R(P ⊗ P,M) ⇔ bilinear M-valued forms on P.

HomR⊗R(P ⊗ P,M)C2 ⇔ symmetric M-valued forms on P.

HomR⊗R(P ⊗ P,M)C2 ⇔ quadratic M-valued forms on P.

The polarization of an M-valued form quadratic form on P is its image
under the norm map

HomR⊗R(P ⊗ P,M)C2
// HomR⊗R(P ⊗ P,M)C2

[β]
� // β(x , y) + σβ(y , x)

Symmetric forms in the image of this map are called even forms.
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Invertible modules with involution

Definition

A module with involution M over R is invertible if R is finitely generated
and projective as an R-module, and the the map R → HomR(M),
induced by the two commuting R-actions, is an isomorphism.

For M an invertible module with involution over R one obtains an
induced duality

DM ∶Proj(R)op
≃ // Proj(R)

P
� // HomR(P,M)

Any bilinear or symmetric M-valued form β∶P ⊗ P →M induces a
homomorphism β♯∶P → DM(P). The form β is called unimodular if β♯ is
an isomorphism. A quadratic form is unimodular if its polarization is.
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Invertible modules with involution

Summary

An invertible module with involution M determines a duality
DM(P) = HomR(P,M) on Proj(R). A form β is called unimodular if the
induced map β♯∶P → DM(P) is an isomorphism.

Examples

R commutative M = R with trivial involution ⇒ usual notion of
unimodular symmetric and quadratic forms.

R commutative M = R with sign involution ⇒ unimodular
skew-symmetric and skew-quadratic forms.

R with anti-involution σ∶R
≅
Ð→ Rop (e.g., group rings), M = R with

involution σ, or twisted by a central unit ε s.t. σ(ε) = ε−1.

When R is commutative one can take M to be any line bundle with
involution over spec(R). This example naturally extends to the context
of schemes.
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L-groups with coefficients

The definition of quadratic L-groups extends to the setting of an
invertible module with involution M. The associated quadratic L-groups
Lq
n(R,M) satisfy Lq

n+2(R,M) = Lq
n(R,−M) with Lq

0(R,M) the Witt group
of M-valued forms. Here −M is obtained from M by twisting the
involution by a sign.

Grothendieck-Witt groups with coefficients

For R and M as above the associated Grothendieck-Witt space

GW
q
cl(R,M) ∶= Unimodq,≃(R,M)

grp

is defined by the group completion of the symmetric monoidal groupoid
of unimodular M-valued forms. It’s group of components GWq

0(R,M) is
then the Grothendieck group of such forms.

An analogous definition can be made for symmetric and even forms.
Polarization determines maps

GW
q
cl(R,M) → GW

ev
cl (R,M) → GW

s
cl(R,M)

which are equivalences when 1
2
∈ R.
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What’s going on?

We obtain an exact sequence

K0(R)C2 → GWq
0(R,M) → Lq

0(R,M) → 0

When 2 is invertible this sequence continues on the left to a long exact
sequence involving higher Grothendieck-Witt groups, the quadratic
L-groups, and the homotopy groups of K(R,M)hC2 . This can be used to
reduce the study of Grothendieck-Witt groups to that of algebraic
K-theory and the four groups Lq

0(R,±M),Lq
1(R,±M), the latter being

fairly accessible to computations.

This completely fails when 2 is not invertible.

In fact, when 2 is not invertible the relative homotopy groups of the map
K(R)C2 → GW

q
cl(R,M) are generally not 4-periodic.

So what are these groups?

Answering this question is one of the main applications of the framework
we are about to present.
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Back to K-theory

To explain our approach, consider again algebraic K-theory.

Classical observation

The algebraic K-groups of R depends only on a certain category
associated to R - the category of finitely generated projective R-modules
- and the fact that this category admit direct sums.

Idea: define the algebraic K-group of an additive category. In particular,
Kn(R) = Kn(Proj(R)).

Variants

Consider additive categories with additional structure:
exact categories (Quillen), cofibration categories (Waldhausen).
Allows to take into account the case of vector bundles.

Modern perspective

Consider stable ∞-categories.
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What is an ∞-category?

A notion of a category adapted to homotopy theory and homological
algebra. One may speak of objects and morphisms, but also about
homotopies between morphisms, homotopies between homotopies, etc.

Every ordinary category can be considered an ∞-category.

Every space can be considered as an ∞-category whose objects are
points and morphisms are paths. This association identifies the notion
of a space with that of an ∞-groupoid, that is, an ∞-category all of
whose morphisms are invertible, an idea known as Grothendieck’s
homotopy hypothesis.
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Some ∞-categories of interest

Example Classical counterpart
S - the ∞-category of spaces Sets
Sp - the ∞-category of spectra Abelian groups

Spf ⊆ Sp - subcategory of finite Finitely generated
spectra abelian groups
D(R) - the derived ∞-category R-modules
of a ring R
Dp(R) ⊆D(R) - the subcategory f. g. projective
of perfect complexes R-modules
Dp(X ) - the ∞-category of perfect Vector bundles on X
quasi-coherent sheaves on a scheme X
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Stable ∞-categories

Familiar notions from ordinary category theory usually have ∞-categorical
counterparts with similar behaviors. For example, one may speak of limits
and colimits, functors, adjunctions, etc.

Definition

An ∞-category C is said to be stable if it admits a zero object 0,
pushouts and pullbacks, and the collection of pushout and pullback
squares coincides. One then refers to such squares as exact squares.
Exact squares with one corner zero are known as exact sequences.

Every stable ∞-category is additive.

Examples

The ∞-categories Sp and Spf are stable.

For a ring R the derived ∞-category D(R) and its full subcategory
Dp(R) are both stable ∞-categories.

The ∞-category of perfect of quasi-coherent sheaves on a scheme is
stable.
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Algebraic K-theory of stable ∞-categories

For C a stable ∞-category there is an ∞-category Span(C), whose objects
are the objects of C, and whose morphisms from X to Y are diagrams

W
!!CCC

}}{{{

X Y

in C, also known as spans. Spans are composed by forming the fiber
product over the middle object.

Definition (Barwick-Rognes)

The K-theory space of a stable ∞-category C is given by

K(C) = Ω∣Span(C)∣,

where ∣ ● ∣ denotes the realization, or classifying space of an ∞-category,
and Ω denotes taking loop spaces.

The formation of direct sums makes K(C) into an E∞-group.
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Algebraic K-theory of stable ∞-categories

Definition (Barwick-Rognes)

The K-theory space of a stable ∞-category C is given by

K(C) = Ω∣Span(C)∣,

where ∣ ● ∣ denotes the realization, or classifying space of an ∞-category,
and Ω denotes taking loop spaces.

This definition is based on Quillen’s definition of the algebraic K-theory
space of an exact category using the Q-construction.

K-theory of higher categories already appears in Waldhausen’s work
using the formalism of categories with cofibrations and weak
equivalences.

A direct adaptation of Waldhausen’s S-construction to the setting of
stable ∞-categories was given by Blumberg-Gepner-Tabuada, and to
Waldhausen ∞-categories by Barwick.

The two approaches to higher K-theory of stable ∞-categories are
equivalent (Barwick-Rognes).
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Examples

Definition (Barwick-Rognes)

The K-theory space of a stable ∞-category C is given by

K(C) = Ω∣Span(C)∣,

where ∣ ● ∣ denotes the realization, or classifying space of an ∞-category,
and Ω denotes taking loop spaces.

(Gillet-Waldhausen) There is a canonical equivalence
K(Dp(R)) ≃K(R) . More generally, for a sufficiently nice scheme
there is a canonical equivalence K(Dp(X )) ≃K(Vect(X )).

The space K(Spf) is also known as Waldhausen A-theory of the point,
and plays an important role in geometric topology.
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From stable to Poincaré ∞-categories

To study Grothendieck-Witt theory, we consider the framework of
Poincaré ∞-categories, suggested by Lurie in his work on L-theory.

Definition

Let f ∶C→D be a functor between stable ∞-categories. Then f is said to
be:

reduced if it preserves zero objects;

exact or linear if it preserves zero objects and exact squares;

quadratic if it preserves zero objects and sends strongly exact 3-cubes
to exact 3-cubes.

Here, a 3-cube diagram in C is called exact if it is a limit/colimit cube,
and strongly exact if its restriction to each 2-dimensional face is an exact
square.

These notions are part of the general framework of Goodwille calculus.
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Hermitian ∞-categories

Definition

A hermitian ∞-category is a pair (C,Ϙ) where C is a stable ∞-category
Ϙ∶Cop → Sp is a quadratic functor.

A hermitian functor (f , η)∶ (C,Ϙ) → (C′,Ϙ′) consists of an exact functor
f ∶C→ C′ and a natural transformation η∶Ϙ⇒ f ∗Ϙ′.

If Ϙ∶Cop → Sp is quadratic then:

Its polarization BϘ(X ,Y ) ∶= fib[Ϙ(X ⊕Y ) → Ϙ(X ) ⊕ Ϙ(Y )] is exact in
each variable. We call BϘ the bilinear part of Ϙ. It is symmetric in X
and Y , i.e., admits a C2-fixed structure with respect to the flip
C2-action on Fun(Cop × Cop,Sp).

The cofiber LϘ(X ) ∶= cof[BϘ(X ,X )hC2 → Ϙ(X )] of the map induced
by the C2-equivariant diagonal X → X ⊕X , is exact in X . We refer to
LϘ as the linear part of Ϙ.

We refer to quadratic functors Cop → Sp as hermitian structures on C.
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Hermitian forms

Given a hermitian ∞-category (C,Ϙ) and an object X ∈ C, we consider
Ϙ(X ) as encoding the notion of hermitian forms on X . In particular, we
refer to maps q∶S→ Ϙ(X ) as hermitian forms on X , and which case we
call the pair (X ,q) a hermitian object.

Example - homotopy symmetric/quadratic forms

Let R be a ring and M an invertible module with involution as discussed
earlier. Then the functors

Ϙ
q
M ∶D

p
(R)

op
→ Sp X ↦ homR⊗R(X ⊗X ,M)hC2

Ϙ
s
M ∶D

p
(R)

op
→ Sp X ↦ homR⊗R(X ⊗X ,M)

hC2

are hermitian structures on Dp(R), encoding homotopy coherent variants
of the notions of quadratic and symmetric M-valued forms, respectively.
Here on the right we use the mapping spectra canonically attached to
any stable ∞-category.
These hermitian structures have the same bilinear part

BM(X ,Y ) = homR⊗R(X ⊗Y ,M).
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Derived hermitian structures

Example - derived hermitian structures

There exists essentially unique hermitian structures

Ϙ
gq
M ,Ϙ

ge
M ,Ϙ

gs
M ∶D

p
(R)

op
→ Sp

whose restriction to Proj(R) ⊆Dp(R) are given by

Ϙ
gq
M (P) = HomR⊗R(P ⊗ P,M)C2

Ϙ
gs
M(P) = HomR⊗R(P ⊗ P,M)

C2

Ϙ
ge
M (P) = im[Ϙ

gq
M (P) → Ϙ

gs
M(P)].

We refer to these as the genuine quadratic, genuine symmetric and
genuine even structures, respectively.

We have a sequence of natural transformations

Ϙ
q
M ⇒ Ϙ

gq
M ⇒ Ϙ

ge
M ⇒ Ϙ

gs
M ⇒ Ϙ

s
M

which induce an equivalence on bilinear parts. When 1
2
∈ R these are all

equivalences.
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Poincaré ∞-categories

Let Ϙ∶Cop → Sp be a hermitian structure on C.

We will say that Ϙ is non-degenerate if there exists a functor
D∶Cop → C together with a natural equivalence

BϘ(X ,Y ) ≃ homC(X ,DY ).

In this case D is determined by BϘ in an essentially unique manner,
and we write DϘ to express its dependence on Ϙ.

We will say that Ϙ is Poincaré if it is non-degenerate and DϘ is an
equivalence of ∞-categories. We will then say that DϘ is the duality
associated to Ϙ.

Definition

A Poincaré ∞-category is a hermitian ∞-category (C,Ϙ) such that Ϙ is
Poincaré.
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Example

The hermitian structures ϘqM ,Ϙ
gq
M ,Ϙ

ge
M ,Ϙ

gs
M ,Ϙ

s
M are all Poincaré and have

the same duality
DM(X ) = Homcx

(X ,M)

given by the formation of mapping complexes into M.

Example

The formation of mapping spectra in C yields a quadratic functor

Ϙhyp∶C
op
× C→ Sp (X ,Y ) ↦ homC(X ,Y ).

The resulting hermitian ∞-category Hyp(C) ∶= (C × Cop,Ϙhyp) is Poincaré
with duality (X ,Y ) ↦ (Y ,X ).

Example

Ϙ
u - a hermitian structure on Spf which is initial among hermitian

structures equipped with a hermitian form S→ Ϙ(S). It sits in a fiber
sequence

hom(X ⊗X ,S)hC2 → Ϙ
u
(X ) → hom(X ,S)

and has bilinear part Bu(X ,Y ) = hom(X ⊗Y ,S). In particular, it is
Poincaré with duality the Spanier-Whitehead duality X ↦ hom(X ,S).
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Poincaré objects

Suppose (X ,q) a hermitian object in a Poincaré ∞-category (C,Ϙ) with
duality D∶Cop → C. Then the image of q in BϘ(X ,X ) = homC(X ,DX )

determines a map
q♯∶X → DX .

We say that (X ,q) is a Poincaré object if q♯ is an equivalence.

The collection of hermitian objects can be organized into an ∞-category
He(C,Ϙ), whose maximal ∞-groupoid we denote by Fm(C,Ϙ). We let
Pn(C,Ϙ) ⊆ Fm(C,Ϙ) be the subspace spanned by the Poincaré objects.

Example (hyperbolic Poincaré objects)

For V ∈ C an object there is a hermitian form h∶S→ Ϙ(V ⊕DV ) coming
from the summand homC(V ,V ) = BϘ(V ,DV ). The resulting hermitian
object hyp(V ) ∶= (V ⊕DV ,h) is always Poincaré.

Example

For the Poincaré ∞-category Hyp(C) one has Pn(Hyp(C)) ≃ C≃.
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Cobordisms

Let (X ,q), (X ′,q′) be two Poincaré objects in (C,Ϙ).

A cobordism from (X ,q) to (X ′,q′) is a span

W
β
!!DDDα

}}|||

X X ′

together with a homotopy η∶α∗q ∼ β∗q′ such that the induced map
W → DX ×DW DX ′ is an equivalence.

Cobordisms can be composed by first composing the spans and then
composing the homotopies.

We say that two Poincaré objects are cobordant if there is a cobordism
between them. This is an equivalence relation.

We say that a Poincaré object (X ,q) is metabolic if it is cobordant to
(0,0). Explicitly, this means that there is a map L→ X and a null
homotopy of q∣L such that the resulting sequence L→ X ≃ DX → DL is
exact. We then say that L is a Lagrangian in X .
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The Q-construction

Recall that the twisted arrow category TwAr[n] of [n] is the category of
pairs i ≤ j ∈ [n] where there is a unique morphism from i ≤ j to i ′ ≤ j ′ if
i ≤ i ′ ≤ j ′ ≤ j , and no morphisms otherwise.

Definition

Let (C,Ϙ) be a hermitian ∞-category. We define
Qn(C) ⊆ Fun(TwAr[n],C) to be the full subcategory spanned by those
functors ϕ∶TwAr[n] → C such that the square

ϕ(i ≤ l) //

��

ϕ(j ≤ l)

��
ϕ(i ≤ k) // ϕ(j ≤ k)

is exact for every i ≤ j ≤ k ≤ l ∈ [n]. We refine this to a hermitian
∞-category Qn(C,Ϙ) = (Qn(C),Ϙn) with Ϙn(ϕ) = limTwAr[n]op Ϙϕ.

Claim

If (C,Ϙ) is Poincaré then Qn(C,Ϙ) is Poincaré for all n.
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The Q-construction and cobordisms

Example

In the Poincaré ∞-category Q1(C,Ϙ) objects are spans X
α
←ÐW

β
Ð→ X ′.

A hermitian form on such a span is by definition a choice of hermitian
forms q,q′ on X and X ′ respectively, and a homotopy η∶α∗q ∼ β∗q′.
Such a hermitian form is Poincaré if and only if (X ,q) and (X ′,q′) are
Poincaré and the induced map W → DX ×DW DX ′ is an equivalence.

In particular, Poincaré objects in Q1(C,Ϙ) correspond to a pair of
Poincaré objects in (C,Ϙ) and a cobordism between them. More
generally, Poincaré objects in Qn(C,Ϙ) can be identified with the data of
a sequence of n composable cobordisms.

Claim

If (C,Ϙ) is a Poincaré ∞-category then the simplicial space given by
[n] ↦ PnQn(C,Ϙ) is a complete Segal space.

Yonatan Harpaz



Cobordism ∞-categories

Definition

Let (C,Ϙ) be a Poincaré ∞-category. We define Cob(C,Ϙ) to be the
∞-category corresponding to the complete Segal space PnQ●(C,Ϙ[1]),
and call it the cobordism category of (C,Ϙ).

Here Ϙ[n] = Σn
Ϙ is the shift of Ϙ. It is introduced to accommodate the

dimension convention in geometric cobordism categories.

Example

For the Poincaré ∞-category Hyp(C) one has Cob(Hyp(C)) ≃ Span(C).
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The L-groups

Definition

The n-th L-group of (C,Ϙ) is the group

Ln(C,Ϙ) ∶= π0∣Cob(C,Ϙ
[−n−1]

)∣

of cobordism classes of Poincaré objects in (C,Ϙ[−n]). Addition is given
by direct sum [[X ,q]] + [[X ′,q′]] = [[X ⊕X ′,q + q′]], and the inverse of
[[X ,q]] is [[X ,−q]].

Example

In the case of (Dp(R),ϘqM) these L-groups recover the classical
Wall-Ranicki quadratic L-groups: Ln(D

p(R),ϘqM) ≅ Lq
n(R,M).

Example

For the Poincaré ∞-category Hyp(C) all L-groups vanish.

Yonatan Harpaz



The Grothendieck-Witt space

Definition

Let (C,Ϙ) be a Poincaré ∞-category. We define its Grothendieck-Witt
space by

GW(C,Ϙ) ∶= Ω∣Cob(C,Ϙ)∣ = Ω∣PnQ●(C,Ϙ[1])∣,
where the middle term ∣ ● ∣ is the geometric realization of an ∞-category,
corresponding in this case to the geometric realization of the simplicial
space on the right.

Example

For the Poincaré ∞-category Hyp(C) one has

GW(Hyp(C)) ≃ Ω∣Span(C)∣ =K(C).
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The comparison theorem

For a ring R, an invertible module with involution M, and
r ∈ {q,gq,ge,gs, s} we denote

GW
r
(R,M) ∶= GW(Dp

(R),ϘrM).

Theorem (Hebestreit-Steimle)

There are natural equivalences

GW
gq

(R,M) ≅ GW
q
cl(R,M)

GW
ge
(R,M) ≅ GW

ev
cl (R,M)

GW
gs
(R,M) ≅ GW

s
cl(R,M).

The Grothendieck-Witt space of the genuine Poincaré structures recovers
classical Grothendieck-Witt spaces defined using unimodular forms and
group completion.

GW
q
(R,M) and GW

s
(R,M) are new invariants of rings.
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The Grothendieck-Witt group

The group of components GW0(C,Ϙ) = π0 GW(C,Ϙ) admits the following
explicit presentation:

Generators and relations for GW0

The group GW0(C,Ϙ) is generated by equivalence classes [X ,q] of
Poincaré objects modulue the relation

[X ,q] = [hyp(L)]

whenever (X ,q) is metabolic with Lagrangian L→ X .

After taking cobordism classes one has [[X ,q]] = [[hyp(L)]] = 0, and so
the association [X ,q] ↦ [[X ,q]] determines a group homomorphism
GW0(C,Ϙ) → L0(C,Ϙ). This homomorphism fits in an exact sequence

K0(C)C2 → GW0(C,Ϙ) → L0(C,Ϙ) → 0,

where the first map is induced by Z ↦ hyp(Z).

Can we extend this exact sequence to the left?
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