New perspectives in hermitian K-theory

Yonatan Harpaz

CNRS, Université Paris 13

New perspectives on K- and L-theory, Sep. 2020

Joint work with Baptiste Calmès, Emanuele Dotto, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus and Wolfgang Steimle.

Algebraic K-theory

For a ring R, the algebraic K-group $K_0(R)$ is generated by isomorphism classes [P] of finitely generated projective R-modules, under the relation $[P \oplus Q] = [P] + [Q]$.

- An algebraic analogue of the complex K-theory group $KU_0(X)$ of a topological space X.
- For R commutative, it captures rich geometric information about spec(R), related to its Picard group, Chow groups and motivic cohomology.
- For $R = \mathbb{Z}[G]$ a group ring the quotient $K_0(R)/K_0(\mathbb{Z})$ detects Wall's finiteness obstructions for a homotopy compact space with fundamental group G to be represented by a finite CW-complex.
- Can also be defined for sufficiently nice algebraic varieties and schemes by considering isomorphism classes of vector bundles and enforcing the relation [F] = [E] + [G] for every short exact sequence

$$0 \longrightarrow E \longrightarrow F \longrightarrow G \longrightarrow 0$$

of vector bundles.

The Grothendieck-Witt group

For a commutative ring R, the *Grothendieck-Witt group* $\mathrm{GW}_0^\mathrm{q}(R)$ is defined by isomorphism classes [P,q] of finitely generated projective modules equipped with a unimodular quadratic form, under the relation $[P\oplus P',q\oplus q']=[P,q]+[P',q'].$

- An algebraic analogue of real K-theory group $KO_0(X)$ of a topological space X.
- Is related to algebraic K-theory via a pair of maps

$$GW_0^{q}(R) \xrightarrow{\text{fgt}} K_0(R) \xrightarrow{\text{hyp}} GW_0^{q}(R)$$
$$[P, q] \longmapsto [P] \longmapsto [P \oplus P^*, h]$$

• (Knebusch) For a sufficiently nice variety X we can define $\mathrm{GW}_0^{\mathrm{q}}(X)$ as the group generated by classes of vector bundles equipped with a unimodular quadratic forms under the direct sum relations and the relations $[E,q]=[L\oplus L^*,h]$ whenever E is a vector bundle with a unimodular form q and $L\subseteq E$ is a Lagrangian sub-bundle.

The Witt group

The cokernel of the map $\operatorname{hyp}: \mathsf{K}_0(R) \to \mathsf{GW}_0^q(R)$ is known as the *Witt* group $\mathsf{W}^q(R)$. One obtains an exact sequence

$$\mathsf{K}_0(R)_{\mathrm{C}_2} \to \mathsf{GW}^{\mathrm{q}}_0(R) \to \mathsf{W}^{\mathrm{q}}(R) \to 0$$

where the first term denotes the C_2 -orbits of $K_0(R)$ with respect to the action $[P] \mapsto [P^*]$, under which the hyperbolic map is invariant.

- This sequence is often used to obtain information on $GW_0^q(R)$ via the two outer groups, which are often more accessible.
- For example, for $R=\mathbb{Z}$ this sequence is split exact with an isomorphism $W^q(\mathbb{Z})\cong \mathbb{Z}$ via the signature divided by 8 and an isomorphism $K_0(\mathbb{Z})\cong \mathbb{Z}$ via the rank.
- For R a field of characteristic not 2 the group $W^q(R)$ is highly accessible via a filtration by Galois $\mathbb{Z}/2$ cohomology groups. This was the subject of the famous Milnor conjecture, proven by Voevodsky.

Can we go higher?

$$\mathsf{K}_0(R)_{\mathrm{C}_2} \to \mathsf{GW}_0^{\mathrm{q}}(R) \to \mathsf{W}^{\mathrm{q}}(R) \to 0$$

This sequence looks like it should be continued from the left to a long exact sequence. But with what groups?

Definition (Quillen)

The algebraic K-theory space

$$\mathcal{K}(R) := \operatorname{Proj}^{\simeq}(R)^{\operatorname{grp}}$$

is defined as the group completion of the symmetric monoidal groupoid (considered as an E_{∞} -monoid in spaces) of f. g. projective R-modules.

Definition (Karoubi-Villamayor)

The Grothendieck-Witt space

$$\mathcal{GW}_{\mathrm{cl}}^{\mathrm{q}}(R) \coloneqq \mathrm{Unimod}^{\mathrm{q},\simeq}(R)^{\mathrm{grp}}$$

is defined as the group completion of the symmetric monoidal groupoid of f. g. projective R-modules equipped with a unimodular quadratic form.

Can we go higher?

$$\mathsf{K}_0(R)_{\mathrm{C}_2} \to \mathsf{GW}^{\mathrm{q}}_0(R) \to \mathsf{W}^{\mathrm{q}}(R) \to 0$$

When 2 is invertible in R, this sequence extends to a long exact sequence involving:

- The homotopy groups of the homotopy C_2 -orbits $\mathcal{K}(R)_{hC_2}$.
- The homotopy groups of $\mathcal{GW}_{\mathrm{cl}}^{\mathrm{q}}(R)$, i.e., the higher Grothendieck-Witt groups.
- The quadratic L-groups of R defined by Wall and Ranicki.

L-groups

For a commutative ring R, the quadratic L-groups $\mathsf{L}_n^{\mathrm{q}}(R)$ are 4-periodic, with $\mathsf{L}_0^{\mathrm{q}}(R) = \mathsf{W}^{\mathrm{q}}(R)$ the Witt group of quadratic forms over R.

L-groups

Quadratic L-groups were defined by Wall and Ranicki in the context of surgery theory. The relevant ring R is then the group ring $\mathbb{Z}\pi_1(X)$ of the fundamental group of a given space.

What are quadratic forms over non-commutative rings?

Several proposals in varying levels of generality have been proposed in the literature (Wall's anti-structures, Karoubi's hermitian rings). They can all be described via the following formalism:

Modules with involution

Let R be an associative ring. A *module* with involution over R is an $(R \otimes R)$ -module M, together with an involution $\sigma \colon M \to M$ satisfying $\sigma((r \otimes s)m) = (s \otimes r)\sigma(m)$.

Non-commutative quadratic forms

Modules with involution

Let R be an associative ring. A *module* with involution over R is an $(R \otimes R)$ -module M, together with an involution $\sigma: M \to M$ satisfying $\sigma((r \otimes s)m) = (s \otimes r)\sigma(m)$.

For $P \in \text{Proj}(R)$:

- $\operatorname{Hom}_{R\otimes R}(P\otimes P,M)\Leftrightarrow \operatorname{bilinear} M\operatorname{-valued}$ forms on P.
- $\operatorname{Hom}_{R\otimes R}(P\otimes P,M)^{C_2}\Leftrightarrow \operatorname{symmetric} M\operatorname{-valued}$ forms on P.
- $\operatorname{Hom}_{R\otimes R}(P\otimes P,M)_{\mathcal{C}_2}\Leftrightarrow\operatorname{quadratic} M\operatorname{-valued}$ forms on P.

The polarization of an M-valued form quadratic form on P is its image under the norm map

$$\operatorname{\mathsf{Hom}}_{R\otimes R}(P\otimes P,M)_{\mathcal{C}_2} \longrightarrow \operatorname{\mathsf{Hom}}_{R\otimes R}(P\otimes P,M)^{\mathcal{C}_2}$$
$$[\beta] \longmapsto \beta(x,y) + \sigma\beta(y,x)$$

Symmetric forms in the image of this map are called even forms.

Invertible modules with involution

Definition

A module with involution M over R is *invertible* if R is finitely generated and projective as an R-module, and the map $R \to \operatorname{Hom}_R(M)$, induced by the two commuting R-actions, is an isomorphism.

For M an invertible module with involution over R one obtains an induced duality

$$D_M: \operatorname{Proj}(R)^{\operatorname{op}} \xrightarrow{\simeq} \operatorname{Proj}(R)$$

$$P \longmapsto \operatorname{\mathsf{Hom}}_R(P, M)$$

Any bilinear or symmetric M-valued form $\beta\colon P\otimes P\to M$ induces a homomorphism $\beta_{\sharp}\colon P\to \mathrm{D}_M(P)$. The form β is called *unimodular* if β_{\sharp} is an isomorphism. A quadratic form is *unimodular* if its polarization is.

Invertible modules with involution

Summary

An invertible module with involution M determines a duality $\mathrm{D}_M(P) = \mathrm{Hom}_R(P,M)$ on $\mathrm{Proj}(R)$. A form β is called unimodular if the induced map $\beta_\sharp \colon P \to \mathrm{D}_M(P)$ is an isomorphism.

Examples

- R commutative M = R with trivial involution \Rightarrow usual notion of unimodular symmetric and quadratic forms.
- R commutative M = R with sign involution \Rightarrow unimodular skew-symmetric and skew-quadratic forms.
- R with anti-involution $\sigma: R \xrightarrow{\cong} R^{\mathrm{op}}$ (e.g., group rings), M = R with involution σ , or twisted by a central unit ε s.t. $\sigma(\varepsilon) = \varepsilon^{-1}$.
- When R is commutative one can take M to be any line bundle with involution over $\operatorname{spec}(R)$. This example naturally extends to the context of schemes.

L-groups with coefficients

The definition of quadratic L-groups extends to the setting of an invertible module with involution M. The associated quadratic L-groups $\mathsf{L}^{\mathrm{q}}_n(R,M)$ satisfy $\mathsf{L}^{\mathrm{q}}_{n+2}(R,M) = \mathsf{L}^{\mathrm{q}}_n(R,-M)$ with $\mathsf{L}^{\mathrm{q}}_0(R,M)$ the Witt group of M-valued forms. Here -M is obtained from M by twisting the involution by a sign.

Grothendieck-Witt groups with coefficients

For R and M as above the associated *Grothendieck-Witt space*

$$\mathcal{GW}_{cl}^{q}(R,M) := \mathrm{Unimod}^{q,\simeq}(R,M)^{\mathrm{grp}}$$

is defined by the group completion of the symmetric monoidal groupoid of unimodular M-valued forms. It's group of components $\mathrm{GW}_0^\mathrm{q}(R,M)$ is then the Grothendieck group of such forms.

An analogous definition can be made for symmetric and even forms. Polarization determines maps

$$\mathcal{GW}^{\mathrm{q}}_{\mathrm{cl}}(R,M) \to \mathcal{GW}^{\mathrm{ev}}_{\mathrm{cl}}(R,M) \to \mathcal{GW}^{\mathrm{s}}_{\mathrm{cl}}(R,M)$$

which are equivalences when $\frac{1}{2} \in R$.

What's going on?

We obtain an exact sequence

$$\mathsf{K}_0(R)_{\mathrm{C}_2} \to \mathsf{GW}^{\mathrm{q}}_0(R,M) \to \mathsf{L}^{\mathrm{q}}_0(R,M) \to 0$$

When 2 is invertible this sequence continues on the left to a long exact sequence involving higher Grothendieck-Witt groups, the quadratic L-groups, and the homotopy groups of $\mathcal{K}(R,M)_{\mathrm{hC}_2}.$ This can be used to reduce the study of Grothendieck-Witt groups to that of algebraic K-theory and the four groups $L_0^q(R,\pm M),L_1^q(R,\pm M),$ the latter being fairly accessible to computations.

This completely fails when 2 is not invertible.

In fact, when 2 is not invertible the relative homotopy groups of the map $\mathcal{K}(R)_{\mathrm{C}_2} \to \mathcal{GW}^{\mathrm{q}}_{\mathrm{cl}}(R,M)$ are generally not 4-periodic.

So what are these groups?

Answering this question is one of the main applications of the framework we are about to present.

Back to K-theory

To explain our approach, consider again algebraic K-theory.

Classical observation

The algebraic K-groups of R depends only on a certain category associated to R - the category of finitely generated projective R-modules - and the fact that this category admit direct sums.

Idea: define the algebraic K-group of an *additive* category. In particular, $K_n(R) = K_n(\text{Proj}(R))$.

Variants

Consider additive categories with additional structure: exact categories (Quillen), cofibration categories (Waldhausen). Allows to take into account the case of vector bundles.

Modern perspective

Consider stable ∞ -categories.

What is an ∞ -category?

A notion of a category adapted to homotopy theory and homological algebra. One may speak of objects and morphisms, but also about homotopies between morphisms, homotopies between homotopies, etc.

- Every ordinary category can be considered an ∞-category.
- Every space can be considered as an ∞-category whose objects are points and morphisms are paths. This association identifies the notion of a space with that of an ∞-groupoid, that is, an ∞-category all of whose morphisms are invertible, an idea known as Grothendieck's homotopy hypothesis.

Some ∞-categories of interest

Example	Classical counterpart
S - the ∞ -category of spaces	Sets
$\mathbb{S}p$ - the ∞ -category of spectra	Abelian groups
$\mathbb{S}p^{\mathrm{f}} \subseteq \mathbb{S}p$ - subcategory of finite	Finitely generated
spectra	abelian groups
$\mathfrak{D}(R)$ - the derived ∞ -category	R-modules
of a ring R	
$\mathfrak{D}^\mathrm{p}(R) \subseteq \mathfrak{D}(R)$ - the subcategory	f. g. projective
of perfect complexes	<i>R</i> -modules
$\mathfrak{D}^\mathrm{p}(X)$ - the ∞ -category of perfect	Vector bundles on X
quasi-coherent sheaves on a scheme X	

Stable ∞-categories

Familiar notions from ordinary category theory usually have ∞ -categorical counterparts with similar behaviors. For example, one may speak of limits and colimits, functors, adjunctions, etc.

Definition

An ∞ -category $\mathcal C$ is said to be *stable* if it admits a zero object 0, pushouts and pullbacks, and the collection of pushout and pullback squares coincides. One then refers to such squares as *exact squares*. Exact squares with one corner zero are known as *exact sequences*.

Every stable ∞-category is additive.

Examples

- The ∞ -categories $\mathcal{S}p$ and $\mathcal{S}p^{\mathrm{f}}$ are stable.
- For a ring R the derived ∞ -category $\mathcal{D}(R)$ and its full subcategory $\mathcal{D}^p(R)$ are both stable ∞ -categories.
- ullet The ∞ -category of perfect of quasi-coherent sheaves on a scheme is stable.

Algebraic K-theory of stable ∞-categories

For $\mathcal C$ a stable ∞ -category there is an ∞ -category $\mathrm{Span}(\mathcal C)$, whose objects are the objects of $\mathcal C$, and whose morphisms from X to Y are diagrams

in \mathcal{C} , also known as *spans*. Spans are composed by forming the fiber product over the middle object.

Definition (Barwick-Rognes)

The K-theory space of a stable ∞ -category ${\mathcal C}$ is given by

$$\mathcal{K}(\mathcal{C}) = \Omega |\operatorname{Span}(\mathcal{C})|,$$

where $|\bullet|$ denotes the realization, or classifying space of an ∞ -category, and Ω denotes taking loop spaces.

The formation of direct sums makes $\mathcal{K}(\mathcal{C})$ into an E_{∞} -group.

Algebraic K-theory of stable ∞-categories

Definition (Barwick-Rognes)

The K-theory space of a stable ∞ -category ${\mathcal C}$ is given by

$$\mathcal{K}(\mathcal{C}) = \Omega |\operatorname{Span}(\mathcal{C})|,$$

where $|\bullet|$ denotes the realization, or classifying space of an ∞ -category, and Ω denotes taking loop spaces.

- This definition is based on Quillen's definition of the algebraic K-theory space of an exact category using the Q-construction.
- K-theory of higher categories already appears in Waldhausen's work using the formalism of categories with cofibrations and weak equivalences.
- A direct adaptation of Waldhausen's S-construction to the setting of stable ∞-categories was given by Blumberg-Gepner-Tabuada, and to Waldhausen ∞-categories by Barwick.
- The two approaches to higher K-theory of stable ∞-categories are equivalent (Barwick-Rognes).

Examples

Definition (Barwick-Rognes)

The K-theory space of a stable ∞ -category ${\mathcal C}$ is given by

$$\mathcal{K}(\mathcal{C}) = \Omega |\operatorname{Span}(\mathcal{C})|,$$

where $|\bullet|$ denotes the realization, or classifying space of an ∞ -category, and Ω denotes taking loop spaces.

- (Gillet-Waldhausen) There is a canonical equivalence $\mathcal{K}(\mathcal{D}^p(R)) \simeq \mathcal{K}(R)$. More generally, for a sufficiently nice scheme there is a canonical equivalence $\mathcal{K}(\mathcal{D}^p(X)) \simeq \mathcal{K}(\mathrm{Vect}(X))$.
- The space $\mathcal{K}(\mathcal{S}\rho^f)$ is also known as Waldhausen A-theory of the point, and plays an important role in geometric topology.

From stable to Poincaré ∞-categories

To study Grothendieck-Witt theory, we consider the framework of Poincaré ∞-categories, suggested by Lurie in his work on L-theory.

Definition

Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between stable ∞ -categories. Then f is said to be:

- reduced if it preserves zero objects;
- exact or linear if it preserves zero objects and exact squares;
- quadratic if it preserves zero objects and sends strongly exact 3-cubes to exact 3-cubes.

Here, a 3-cube diagram in $\mathcal C$ is called exact if it is a limit/colimit cube, and strongly exact if its restriction to each 2-dimensional face is an exact square.

These notions are part of the general framework of Goodwille calculus.

Hermitian ∞-categories

Definition

- A hermitian ∞ -category is a pair (\mathcal{C}, Ω) where \mathcal{C} is a stable ∞ -category $\Omega: \mathcal{C}^{\mathrm{op}} \to \mathcal{S}p$ is a quadratic functor.
- A hermitian functor (f, η) : $(\mathcal{C}, \Omega) \to (\mathcal{C}', \Omega')$ consists of an exact functor $f: \mathcal{C} \to \mathcal{C}'$ and a natural transformation $\eta: \Omega \to f^*\Omega'$.

If $\Omega: \mathbb{C}^{op} \to \mathbb{S}p$ is quadratic then:

- Its polarization $B_{\Omega}(X,Y) := fib[\Omega(X \oplus Y) \to \Omega(X) \oplus \Omega(Y)]$ is exact in each variable. We call B_{Ω} the bilinear part of Ω . It is symmetric in X and Y, i.e., admits a C_2 -fixed structure with respect to the flip C_2 -action on $Fun(\mathcal{C}^{op} \times \mathcal{C}^{op}, \mathcal{S}p)$.
- The cofiber $L_{\mathbb{Q}}(X) \coloneqq \text{cof}[B_{\mathbb{Q}}(X,X)_{hC_2} \to \mathbb{Q}(X)]$ of the map induced by the C_2 -equivariant diagonal $X \to X \oplus X$, is exact in X. We refer to $L_{\mathbb{Q}}$ as the *linear part* of Ω .

We refer to quadratic functors $\mathcal{C}^{op} \to \mathcal{S}p$ as hermitian structures on \mathcal{C} .

Hermitian forms

Given a hermitian ∞ -category (\mathcal{C}, Ω) and an object $X \in \mathcal{C}$, we consider $\Omega(X)$ as encoding the notion of hermitian forms on X. In particular, we refer to maps $q \colon \mathbb{S} \to \Omega(X)$ as hermitian forms on X, and which case we call the pair (X, q) a hermitian object.

Example - homotopy symmetric/quadratic forms

Let R be a ring and M an invertible module with involution as discussed earlier. Then the functors

$$\begin{array}{ll} \Omega^{\mathbf{q}}_{M} \colon \mathcal{D}^{\mathbf{p}}(R)^{\mathrm{op}} \to \mathcal{S}p & X \mapsto \mathsf{hom}_{R \otimes R}(X \otimes X, M)_{\mathrm{hC}_{2}} \\ \Omega^{\mathbf{s}}_{M} \colon \mathcal{D}^{\mathbf{p}}(R)^{\mathrm{op}} \to \mathcal{S}p & X \mapsto \mathsf{hom}_{R \otimes R}(X \otimes X, M)^{\mathrm{hC}_{2}} \end{array}$$

are hermitian structures on $\mathbb{D}^p(R)$, encoding homotopy coherent variants of the notions of quadratic and symmetric M-valued forms, respectively. Here on the right we use the mapping spectra canonically attached to any stable ∞ -category.

These hermitian structures have the same bilinear part

$$B_M(X, Y) = hom_{R \otimes R}(X \otimes Y, M).$$

Derived hermitian structures

Example - derived hermitian structures

There exists essentially unique hermitian structures

$$\Omega_M^{\mathrm{gq}}, \Omega_M^{\mathrm{ge}}, \Omega_M^{\mathrm{gs}} : \mathcal{D}^{\mathrm{p}}(R)^{\mathrm{op}} \to \mathcal{S}p$$

whose restriction to $Proj(R) \subseteq \mathcal{D}^{p}(R)$ are given by

$$\begin{split} & \Omega_{M}^{\mathrm{gq}}(P) = \mathrm{Hom}_{R \otimes R}(P \otimes P, M)_{\mathrm{C}_{2}} \\ & \Omega_{M}^{\mathrm{gs}}(P) = \mathrm{Hom}_{R \otimes R}(P \otimes P, M)^{\mathrm{C}_{2}} \\ & \Omega_{M}^{\mathrm{ge}}(P) = \mathrm{im} \big[\Omega_{M}^{\mathrm{gq}}(P) \to \Omega_{M}^{\mathrm{gs}}(P) \big]. \end{split}$$

We refer to these as the *genuine quadratic*, *genuine symmetric* and *genuine even* structures, respectively.

We have a sequence of natural transformations

$$\Omega_M^{\mathrm{q}} \Rightarrow \Omega_M^{\mathrm{gq}} \Rightarrow \Omega_M^{\mathrm{ge}} \Rightarrow \Omega_M^{\mathrm{gs}} \Rightarrow \Omega_M^{\mathrm{s}}$$

which induce an equivalence on bilinear parts. When $\frac{1}{2} \in R$ these are all equivalences.

Poincaré ∞-categories

Let $\Omega: \mathbb{C}^{\mathrm{op}} \to \mathbb{S}p$ be a hermitian structure on \mathbb{C} .

• We will say that Ω is *non-degenerate* if there exists a functor $D: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ together with a natural equivalence

$$B_{\mathfrak{D}}(X,Y) \simeq \mathsf{hom}_{\mathfrak{C}}(X,\mathcal{D}Y).$$

In this case D is determined by B_{Ω} in an essentially unique manner, and we write D_{Ω} to express its dependence on Ω .

We will say that Ω is Poincaré if it is non-degenerate and DΩ is an equivalence of ∞-categories. We will then say that DΩ is the duality associated to Ω.

Definition

A Poincaré ∞ -category is a hermitian ∞ -category (\mathfrak{C}, Ω) such that Ω is Poincaré.

Example

The hermitian structures Ω_M^q , Ω_M^{gq} , Ω_M^{ge} , Ω_M^{gs} , Ω_M^s are all Poincaré and have the same duality

$$D_M(X) = \operatorname{Hom}^{\operatorname{cx}}(X, M)$$

given by the formation of mapping complexes into M.

Example

The formation of mapping spectra in ${\mathcal C}$ yields a quadratic functor

$$Q_{\text{hyp}}: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{S}p \qquad (X, Y) \mapsto \text{hom}_{\mathcal{C}}(X, Y).$$

The resulting hermitian ∞ -category $\mathsf{Hyp}(\mathfrak{C}) \coloneqq (\mathfrak{C} \times \mathfrak{C}^\mathrm{op}, \Omega_\mathrm{hyp})$ is Poincaré with duality $(X,Y) \mapsto (Y,X)$.

Example

 Ω^{u} - a hermitian structure on $\mathbb{S}p^{\mathrm{f}}$ which is initial among hermitian structures equipped with a hermitian form $\mathbb{S} \to \Omega(\mathbb{S})$. It sits in a fiber sequence $\hom(X \otimes X, \mathbb{S})_{hC_2} \to \Omega^{\mathrm{u}}(X) \to \hom(X, \mathbb{S})$

and has bilinear part $B^{\mathrm{u}}(X,Y) = \mathrm{hom}(X \otimes Y,\mathbb{S})$. In particular, it is Poincaré with duality the Spanier-Whitehead duality $X \mapsto \mathrm{hom}(X,\mathbb{S})$.

Yonatan Harpaz

Poincaré objects

Suppose (X,q) a hermitian object in a Poincaré ∞ -category (\mathcal{C},Ω) with duality $D:\mathcal{C}^{\mathrm{op}}\to\mathcal{C}$. Then the image of q in $\mathrm{B}_{\Omega}(X,X)=\mathrm{hom}_{\mathcal{C}}(X,\mathrm{D}X)$ determines a map

$$q_{\sharp}: X \to \mathrm{D}X.$$

We say that (X, q) is a *Poincaré object* if q_{\sharp} is an equivalence.

The collection of hermitian objects can be organized into an ∞ -category $\operatorname{He}(\mathcal{C}, \Omega)$, whose maximal ∞ -groupoid we denote by $\operatorname{Fm}(\mathcal{C}, \Omega)$. We let $\operatorname{Pn}(\mathcal{C}, \Omega) \subseteq \operatorname{Fm}(\mathcal{C}, \Omega)$ be the subspace spanned by the Poincaré objects.

Example (hyperbolic Poincaré objects)

For $V \in \mathcal{C}$ an object there is a hermitian form $h: \mathbb{S} \to \Omega(V \oplus DV)$ coming from the summand $\hom_{\mathcal{C}}(V, V) = \Beta_{\Omega}(V, DV)$. The resulting hermitian object $\mathrm{hyp}(V) \coloneqq (V \oplus DV, h)$ is always Poincaré.

Example

For the Poincaré ∞ -category $\mathsf{Hyp}(\mathcal{C})$ one has $\mathsf{Pn}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{C}^{\simeq}$.

Cobordisms

Let (X,q),(X',q') be two Poincaré objects in (\mathcal{C},Ω) .

A cobordism from (X, q) to (X', q') is a span

$$X \stackrel{\alpha}{\swarrow} X \stackrel{\beta}{\swarrow} X'$$

together with a homotopy $\eta: \alpha^* q \sim \beta^* q'$ such that the induced map $W \to DX \times_{DW} DX'$ is an equivalence.

Cobordisms can be composed by first composing the spans and then composing the homotopies.

- We say that two Poincaré objects are *cobordant* if there is a cobordism between them. This is an equivalence relation.
- We say that a Poincaré object (X,q) is *metabolic* if it is cobordant to (0,0). Explicitly, this means that there is a map $L \to X$ and a null homotopy of $q|_L$ such that the resulting sequence $L \to X \simeq \mathrm{D}X \to \mathrm{D}L$ is exact. We then say that L is a *Lagrangian* in X.

The Q-construction

Recall that the *twisted arrow category* TwAr[n] of [n] is the category of pairs $i \le j \in [n]$ where there is a unique morphism from $i \le j$ to $i' \le j'$ if $i \le i' \le j' \le j$, and no morphisms otherwise.

Definition

Let (\mathcal{C}, Ω) be a hermitian ∞ -category. We define $Q_n(\mathcal{C}) \subseteq \operatorname{Fun}(\operatorname{TwAr}[n], \mathcal{C})$ to be the full subcategory spanned by those functors $\varphi \colon \operatorname{TwAr}[n] \to \mathcal{C}$ such that the square

$$\varphi(i \le I) \longrightarrow \varphi(j \le I)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varphi(i \le k) \longrightarrow \varphi(j \le k)$$

is exact for every $i \le j \le k \le l \in [n]$. We refine this to a hermitian ∞ -category $Q_n(\mathcal{C}, \Omega) = (Q_n(\mathcal{C}), \Omega_n)$ with $\Omega_n(\varphi) = \lim_{T \to A_r[n]^{op}} \Omega_{\varphi}$.

Claim

If (\mathcal{C}, Ω) is Poincaré then $Q_n(\mathcal{C}, \Omega)$ is Poincaré for all n.

The Q-construction and cobordisms

Example

In the Poincaré ∞ -category $Q_1(\mathcal{C}, \Omega)$ objects are spans $X \stackrel{\alpha}{\leftarrow} W \stackrel{\beta}{\rightarrow} X'$.

- A hermitian form on such a span is by definition a choice of hermitian forms q, q' on X and X' respectively, and a homotopy $\eta: \alpha^*q \sim \beta^*q'$.
- Such a hermitian form is Poincaré if and only if (X,q) and (X',q') are Poincaré and the induced map $W \to DX \times_{DW} DX'$ is an equivalence.

In particular, Poincaré objects in $Q_1(\mathcal{C}, \Omega)$ correspond to a pair of Poincaré objects in (\mathcal{C}, Ω) and a cobordism between them. More generally, Poincaré objects in $Q_n(\mathcal{C}, \Omega)$ can be identified with the data of a sequence of n composable cobordisms.

Claim

If (\mathcal{C}, Ω) is a Poincaré ∞ -category then the simplicial space given by $[n] \mapsto \operatorname{Pn} \mathsf{Q}_n(\mathcal{C}, \Omega)$ is a *complete Segal space*.

Cobordism ∞-categories

Definition

Let $(\mathfrak{C}, \mathfrak{P})$ be a Poincaré ∞ -category. We define $\mathrm{Cob}(\mathfrak{C}, \mathfrak{P})$ to be the ∞ -category corresponding to the complete Segal space $\mathrm{Pn}\,\mathsf{Q}_{\bullet}(\mathfrak{C},\mathfrak{P}^{[1]})$, and call it the *cobordism category* of $(\mathfrak{C},\mathfrak{P})$.

Here $\Omega^{[n]} = \Sigma^n \Omega$ is the shift of Ω . It is introduced to accommodate the dimension convention in geometric cobordism categories.

Example

For the Poincaré ∞ -category $\mathsf{Hyp}(\mathfrak{C})$ one has $\mathsf{Cob}(\mathsf{Hyp}(\mathfrak{C})) \cong \mathsf{Span}(\mathfrak{C})$.

The L-groups

Definition

The *n*-th L-group of (\mathcal{C}, Ω) is the group

$$\mathsf{L}_n(\mathcal{C}, \Omega) \coloneqq \pi_0 |\mathrm{Cob}(\mathcal{C}, \Omega^{[-n-1]})|$$

of cobordism classes of Poincaré objects in $(\mathcal{C}, \Omega^{[-n]})$. Addition is given by direct sum $[[X,q]] + [[X',q']] = [[X \oplus X',q+q']]$, and the inverse of [[X,q]] is [[X,-q]].

Example

In the case of $(\mathcal{D}^p(R), \mathcal{Q}_M^q)$ these L-groups recover the classical Wall-Ranicki quadratic L-groups: $L_n(\mathcal{D}^p(R), \mathcal{Q}_M^q) \cong L_n^q(R, M)$.

Example

For the Poincaré ∞ -category $\mathsf{Hyp}(\mathfrak{C})$ all L-groups vanish.

The Grothendieck-Witt space

Definition

Let (\mathcal{C}, Ω) be a Poincaré ∞ -category. We define its *Grothendieck-Witt* space by $\mathcal{GW}(\mathcal{C}, \Omega) \coloneqq \Omega |\mathrm{Cob}(\mathcal{C}, \Omega)| = \Omega |\mathrm{Pn} \, Q_{\bullet}(\mathcal{C}, \Omega^{[1]})|,$

where the middle term $| \bullet |$ is the geometric realization of an ∞ -category, corresponding in this case to the geometric realization of the simplicial space on the right.

Example

For the Poincaré ∞ -category $\mathsf{Hyp}(\mathfrak{C})$ one has

$$\mathcal{GW}(\mathsf{Hyp}(\mathfrak{C})) \simeq \Omega |\mathsf{Span}(\mathfrak{C})| = \mathcal{K}(\mathfrak{C}).$$

The comparison theorem

For a ring R, an invertible module with involution M, and $r \in \{q, gq, ge, gs, s\}$ we denote

$$\mathfrak{GW}^r(R,M) \coloneqq \mathfrak{GW}(\mathfrak{D}^{\mathrm{p}}(R),\mathfrak{Q}_M^r).$$

Theorem (Hebestreit-Steimle)

There are natural equivalences

$$\begin{split} & \mathfrak{GW}^{\mathrm{gq}}(R,M) \cong \mathfrak{GW}^{\mathrm{q}}_{\mathrm{cl}}(R,M) \\ & \mathfrak{GW}^{\mathrm{ge}}(R,M) \cong \mathfrak{GW}^{\mathrm{el}}_{\mathrm{cl}}(R,M) \\ & \mathfrak{GW}^{\mathrm{gs}}(R,M) \cong \mathfrak{GW}^{\mathrm{s}}_{\mathrm{cl}}(R,M). \end{split}$$

The Grothendieck-Witt space of the genuine Poincaré structures recovers classical Grothendieck-Witt spaces defined using unimodular forms and group completion.

$$\mathcal{GW}^{q}(R,M)$$
 and $\mathcal{GW}^{s}(R,M)$ are new invariants of rings.

The Grothendieck-Witt group

The group of components $GW_0(\mathcal{C}, \Omega) = \pi_0 \mathcal{GW}(\mathcal{C}, \Omega)$ admits the following explicit presentation:

Generators and relations for GW₀

The group $\mathsf{GW}_0(\mathcal{C}, \Omega)$ is generated by equivalence classes [X,q] of Poincaré objects modulue the relation

$$[X,q] = [\mathrm{hyp}(L)]$$

whenever (X, q) is metabolic with Lagrangian $L \to X$.

After taking cobordism classes one has $[[X,q]] = [[\mathrm{hyp}(L)]] = 0$, and so the association $[X,q] \mapsto [[X,q]]$ determines a group homomorphism $\mathrm{GW}_0(\mathcal{C},\Omega) \to \mathrm{L}_0(\mathcal{C},\Omega)$. This homomorphism fits in an exact sequence

$$\mathsf{K}_0(\mathfrak{C})_{\mathrm{C}_2} \to \mathsf{GW}_0(\mathfrak{C}, \mathfrak{P}) \to \mathsf{L}_0(\mathfrak{C}, \mathfrak{P}) \to 0,$$

where the first map is induced by $Z \mapsto \text{hyp}(Z)$.

Can we extend this exact sequence to the left?