New perspectives in hermitian K-theory Il

Yonatan Harpaz

CNRS, Université Paris 13

New perspectives on K- and L-theory, Sep. 2020

Joint work with Baptiste Calmes, Emanuele Dotto, Fabian Hebestreit,
Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus and
Wolfgang Steimle.

Yonatan Harpaz



Recollection: Poincaré co-categories

Yonatan Harpaz



Recollection: Poincaré co-categories

@ A hermitian co-category is a stable co-category C equipped with a
hermitian structure, that is a quadratic (reduced and 2-excisive)
functor ?: C°P — Sp.

Yonatan Harpaz



Recollection: Poincaré co-categories

@ A hermitian co-category is a stable co-category C equipped with a

hermitian structure, that is a quadratic (reduced and 2-excisive)
functor ?: C°P — Sp.

@ A hermitian functor (f,n):(C,?) - (€',?’) consists of an exact functor
f:€ — €’ and a natural transformation 7:? = *¢’.

Yonatan Harpaz



Recollection: Poincaré co-categories

@ A hermitian co-category is a stable co-category C equipped with a

hermitian structure, that is a quadratic (reduced and 2-excisive)
functor ?: C°P — Sp.

@ A hermitian functor (f,n):(C,?) - (€',?’) consists of an exact functor
f:€ — €’ and a natural transformation 7:? = *¢’.

e (C,?) is Poincaré if there exists an equivalence of co-categories
D:C°P — € together with a natural equivalence

BQ(X, Y) ~ hom@(XDY)

Yonatan Harpaz



Recollection: Poincaré co-categories

@ A hermitian co-category is a stable co-category C equipped with a
hermitian structure, that is a quadratic (reduced and 2-excisive)
functor ?: C°P — Sp.

@ A hermitian functor (f,n):(C,?) - (€',?’) consists of an exact functor
f:€ — €’ and a natural transformation 7:? = *¢’.

(C,®) is Poincaré if there exists an equivalence of co-categories
D:C°P — € together with a natural equivalence

BQ(X, Y) ~ hom@(XDY)

D = Dg is essentially uniquely determined by ?, and is called the duality
associated to .
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The category of Poincaré oco-categories

Any hermitian functor (f,7):(€,?) - (€’,?’) between Poincaré
oo-categories determines a natural transformation

Tni fDQ = DQ’ fOp.

We say that (f,n) is a Poincaré functor if 7, is an equivalence. |

The collection of Poincaré co-categories and Poincaré functors can be
organized into a (large) co-category Catl,.

Proposition

The co-category Catl  admits small limits and colimits, and the forgetful
functor
Cat?, — Cat>

preserves small limits and colimits, where Cat_. is the co-category of
stable co-categories and exact functors.
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Group-like functors

The oco-category Catl, is semi-additive - its has a zero object and
products and coproducts coincide.

= Every product preserving functor Cat? — & lifts canonically to a
functor Cat?, - Mong_ (&) to Ec-monoids in €.

We say that a product preserving functor F: Cat®, — & is group-like if its

refinement to Mong_ (&) takes values in group-like monoid objects (i.e.,
those whose associated shear map X x X — X x X is an equivalence).

The loops of any monoid object is group-like. In particular:

The product preserving functor (€, ?) » GW(€,?) = Q|Cob(C,?)| is
group-like.

Non-example

The functor Pu(-) is product preserving but not group-like.
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Poincaré-Verdier sequences

A sequence of Poincaré functors

f, 0
(€,9) 2% (D,0) L2, (e, w)
with vanishing composite is called a Poincaré-Verdier sequence if it is
both a fiber and a cofiber sequence in Cat®? . The sequence is said to
split if p admits both a left and a right adjoint.

Poincaré functors which feature on the left in (split) Poincaré-Verdier
sequences are called (split) Poincaré-Verdier inclusions, and those which
participate on the right (split) Poincaré-Verdier projections.

e A functor (f,7):(€,?) — (D, ®) is a split Poincaré-Verdier inclusion if
and only if f is fully-faithful, admits a right adjoint, and 7:? = 7*9" is
an equivalence.

@ A functor (p,9):(D,d) — (&,V) is a split Poincaré-Verdier projection
if and only if p admits a fully-faithful left adjoint g: € — D and the

0
composed map g*V £ g p*® = & is an equivalence.
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For a Poincaré co-category (C,?) define Met(C,?) to be the hermitian
oo-category whose objects are arrows L — X in € and whose hermitian
structure is given by Q¢ ([L — X]) := fib[2(X) = (L) ].

o Met(C,?) is Poincaré with Dyt ([L = X]) = fib[DX - DL] - DX.

@ A hermitian object in Met(C,?) corresponds to a hermitian object
(X,q), amap L— X, and a null-homotopy 7:q|, ~ 0.

@ A hermitian object (L — X, g,n) is Poincaré if and only if (X, q) is
Poincaré and 7 exhibits L as a Lagrangian in X.

We call Met(C,?) the metabolic Poincaré co-category of (C,?). Its

Poincaré objects correspond to metabolic Poincaré objects in (C,?).

The metabolic sequence

There is a canonical split Poincaré-Verdier sequence
(679[_1]) - Met(e79) - (679)

[L > X]——>X
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Poincaré-Verdier squares

Definition

A commutative square of Poincaré co-categories

(C,?) (D, d)

L

(€,9) — (D, ¢')
is called a (split) Poincaré-Verdier square if it is cartesian and its vertical
legs are (split) Poincaré-Verdier projections.

Definition

Let & be an co-category with finite limits and J: Cat?, — & a functor
which preserves final objects. We say that & is Verdier-localizing if it
sends Poincaré-Verdier squares to fiber squares, and additive if it sends
split Poincaré-Verdier squares to fiber squares.

The functor Pn: Catl, — 8 is Verdier-localizing.
S YonatanHapaz |
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More examples

In the diamond diagram
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L
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sequences.
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More examples

In the diamond diagram

(€,9)

P X

Met(C,9) — = Q1(C,9) —2~ (€,9)

L

Hyp(C)

both the vertical and the horizontal sequence are split Poincaré-Verdier
sequences. Here the bottom vertical functor sends

X< W2 X eQi(@) to (fib[a],Dcof[8]) € € x €.

If F:Catt, — & is a group-like additive functor then
F(Q1(C,9)) = F(C,?) x F(Met(C,2)) = F(C,2) x F(Hyp(C))
and F(Met(€,?)) = F(Hyp(C)).
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Goal: prove that the functor (C,?) — GW(C,?) is additive. The
analogous statement in the setting of exact categories with duality was
proven by Schlichting. Our approach is via cobordism co-categories:

The fibration theorem
If (D,®) — (E,V) is a split Poincaré-Verdier projection then the induced

functor
ps«: Cob(D, ) - Cob(E, V)

is a bicartesian fibration.

When p, is a bicatersian fibration every cobordism

(X,q) « (W.n) - (X".q')
in Cat®(€, W) induces an adjunction between the fibers of p, over (X, q)
and (X’,q"). Since every adjunction induces a homotopy equivalence on
realizations, the family of geometric realizations of fibers of p, is
constant up to homotopy over Cob(&,W). It hence also coincides with
the homotopy fibers of the induced map |Cob(D, ®)| = |Cob(&, V).

The functors (€,?) — |Cob(C,?)| and (C,?) » GW(C,?) are additive.
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To given an idea of the proof, let us just indicate how one can find
p«-(co)cartesian edges in Cob(D, ®). For this, we note that the fibration
theorem has a non-hermitian precursor:

Theorem (Barwick)

Let p:D — & be an exact functor which admits fully-faithful left and right
adjoints. Then the functor p,:Span(D) — Span(€) is a bicartesian
fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

Furthermore, a span X S w i Y in D is p,-cocartesian if and only if «
is p-cartesian and [ is p-cocartesian, and is p.-cartesian if this statement
holds with the role of @ and 3 reversed. The following lemma will allow

us to refine p,-(co)cartesian spans to cobordisms in the hermitian setting:

Let (p,9):(D,d) - (€,WV) be a split Poincaré-Verdier projection and let
B: W — Y be a p-cocartesian edge in D. Then the map
O(Y) = &(W) xypwy) V(p(Y)) is an equivalence.
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Proving the fibration theorem

Let (p,9):(D,d) - (&,V) be a split Poincaré-Verdier projection and let
B:W — Y be a p-cocartesian edge in D. Then the map
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Proving the fibration theorem

Lemma

Let (p,9):(D,d) - (&,V) be a split Poincaré-Verdier projection and let
B:W — Y be a p-cocartesian edge in D. Then the map
D(Y) = (W) xy(pwy) V(p(Y)) is an equivalence.

Proof.
Let g: € - D be a fully-faithful left adjoint to p. Then an arrow
B: W — Y is p-cocartesian if and only if the square

gp(B)
gp(W) —=gp(Y)

b b
B
W—Y
is exact. By the identification ®(g(-)) ~ W(-) it will suffice to show
that ® sends the above square to an exact square of spectra. Since @ is
quadratic, the obstruction to this is the spectrum

Bo (cof[gp(8)], cof[1]) = homs (cof[gp(8)], Do cof[])
- home (cof [p(8)], Dy cof [p(1)]) =0 5
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Proving the fibration theorem

Given a Poincaré object (X, q) in (D,®) and a cobordism

(p(X),p(q)) < (W, ) 2> (¥, r)

in (€,V), we construct a cocartesian lift in Cob(D, ®) as follows.
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Given a Poincaré object (X, q) in (D,®) and a cobordism

a B
(p(X),p(q)) — (W,n) = (Y,r)
in (€,V), we construct a cocartesian lift in Cob(D, ®) as follows.

@ We use that p:’D — € is a bicartesian fibration to find a p-cartesian lift
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Proving the fibration theorem

Given a Poincaré object (X, q) in (D,®) and a cobordism

@ B
(p(X),p(q)) — (W,n) = (Y,r)
in (€,V), we construct a cocartesian lift in Cob(D, ®) as follows.

@ We use that p:’D — € is a bicartesian fibration to find a p-cartesian lift
o' W' — X of o and a p-cocartesian lift 3: W' — Y’ of j.

@ Using the previous lemma we conclude that the space of hermitian
forms on X « W' — Y’ compatible with g, r and 7 is contractible.

@ Taking such a hermitian form (p,7’, r’"), we want to show that it is
Poincaré in Q1(D, ®), that is, that we obtain a cobordism. This is a
consequence of the following observation:

The duality on Q1 (D, ®) preserves the full subcategory consisting of the
spans which are cocartesian with respect to Span(D) — Span(¢&). J

@ The unimoduarity of (p,n’,r") can then be deduced from the unicity of
cartesian and cocartesian lifts.
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Consequences of additivity

The functor Cob(-) sends split Poincaré-Verdier sequences to bicartesian
fibrations = the functor |Cob(-)| is additive = the functor SW(-) is
additive.

Corollary
o SW(Met(€,?)) ~ GW(Hyp(C)) ~ K(C).
o GW(QL(E,Q)) = GW(E,?) x K(€).

Applying additivity in the case of the metabolic sequence yields a fiber

sequence
hyp

gwee, ey L xe) 22 gwe, o)

The space level Bott-Genauer sequence.
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gap between Grothendieck-Witt space and algebraic K-theory space were
defined and studied by Karoubi.
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Karoubi's fundamental theorem
The space level Bott-Genauer sequence

swe, o) = x(e) 25 gw(e, 9)

Definition

| A

For a Poincaré co-category (C,?) define

hyp

U(e, Q) := fib[x(e) = SW(C’ )]
V(€,9) = fib[SW(E, 2) £ % (€)].

In the setting of forms over rings, these homotopy fibers measuring the
gap between Grothendieck-Witt space and algebraic K-theory space were
defined and studied by Karoubi.
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Karoubi's conjecture

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence
V(€,9) ~ Qu(e,el?)

For R a ring and M an invertible module with involution over R one has
natural equivalences of Poincaré oco-categories, yielding four types of
fundamental theorems for rings:

o (DP(R),(24)1)) = (DP(R),2,,)
o (DP(R), (9 ) )z(Dp(R),QiM) VS(R,M) ~ QUS(R,-M)

o (DP(R),(85)12)) = (DP(R),25,) =  VE(R. M)~ QUE(R, - M)
o (DP(R), (9%;)[2 )~ (DP(R),QE’j%) = VE(R, M)~ QUEI(R,-M)

When % € R these claims are all equivalent to the classical Kaourbi's

fundamental theorem.

VI(R, M) ~ QUI(R, - M)
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Karoubi's conjecture

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence
V(€,9) ~ Qu(e,el?)

For R a ring and M an invertible module with involution over R one has
natural equivalences of Poincaré oco-categories, yielding four types of
fundamental theorems for rings:

o (DP(R), (2P = (DP(R),9%,,) = VI(R,M)=QUI(R,-M)
o (DP(R),(25,)2)) = (DP(R),2,,) = Vi(R,M)=QU(R,-M)
o (DP(R), ()2 = (DP(R),95,) = V& (R, M) ~ QUE(R, -M)
o (DP(R),(E)2) ~ (DP(R),98%) = V=(R, M) = QUEI(R, -M)

When % € R these claims are all equivalent to the classical Kaourbi's

fundamental theorem.

When 2 is not invertible, the last two statements apply to classical U-
and V-theory of rings. They give a generalization of Karoubi’s
fundamental theorem conjectured by Karoubi and Giffen.

Yonatan Harpaz
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Definition
For (€,?) Poincaré, a full stable subcategory A c C is called isotropic if

@ ? vanishes when restricted to A.
@ the inclusion A c € admits a right adjoint.
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More consequences of additivity

Definition

For (€,?) Poincaré, a full stable subcategory A c C is called isotropic if
@ ? vanishes when restricted to A.

@ the inclusion A c € admits a right adjoint.

For A c € isotropic we have that

AcCA ={Y eC|Be(X,Y)=0VX e A}.
The Verdier quotient Hlgy(A) := A*/A then acquires a canonical
Poincaré structure, and we call it the homology of A. A is called a
Lagrangian if A+ = A, i.e., if Higy(A) = 0.

Example

o Met(C,?) admits a Lagrangian consisting of the equivalences L 55X

@ Q1(€,?) admits an isotropic subcategory consisting of the spans of the
form 0 < W = X. Its homology is canonically equivalence to (C,9).

e Q,(C,?) admits an isotropic subcategory with homology Q,_1(C,?)
consisting of the sequence of spans 0 < 0 -0+« ... >0« W 5 X.

4
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Isotropic decomposition

Proposition

Let (C,®) be a Poincaré oco-categorywith an isotropic subcategory A c C.
Then for a group-like additive functor F: CatY, — & there is a canonical
decomposition

F(€,?) = F(Higy(A)) x F(Hyp(A)).
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Let (C,®) be a Poincaré oco-categorywith an isotropic subcategory A c C.
Then for a group-like additive functor F: CatY, — & there is a canonical
decomposition

F(€,?) = F(Higy(A)) x F(Hyp(A)).

Corollary
If (€,Q) is a Poincaré co-category with isotropic subcategory A ¢ C then
GW(C,?) ~ GW(HIgy(A)) x X(A).
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Isotropic decomposition

Let (C,®) be a Poincaré oco-categorywith an isotropic subcategory A c C.
Then for a group-like additive functor F: CatY, — & there is a canonical
decomposition

F(€,?) = F(Higy(A)) x F(Hyp(A)).

Corollary

If (€,Q) is a Poincaré co-category with isotropic subcategory A ¢ C then
GW(C,?) ~ GW(HIgy(A)) x X(A).

v

Example
For every group-like additive functor F: Cat?, — & we have
F(Qn(€,2)) = F(€,2) x F(Hyp(C))".

In particular
GW(Q,L(C,2)) ~ GW(E,?) x K(€)".

V.
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Example: additivity of K-theory

Let € > D 2 & be a fiber sequence of stable co-categories such that p
admits a fully-faithful right adjoint r: & - D.
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Let € > D 2 & be a fiber sequence of stable co-categories such that p
admits a fully-faithful right adjoint r: & - D.

= the Poincaré co-category Hyp(D) admits a Lagrangian inclusion

(i,r°P):C x E°P — D x DP.
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Corollary

If F:Cat2, — & is a group-like additive functor then
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Example: additivity of K-theory

Let € > D 2 & be a fiber sequence of stable co-categories such that p
admits a fully-faithful right adjoint r: & - D.

= the Poincaré co-category Hyp(D) admits a Lagrangian inclusion

(i,r°P):C x E°P — D x DP.

Corollary

If F:Cat2, — & is a group-like additive functor then
F(Hyp(D)) = F(Hyp(€)) x F(Hyp(€)).

Corollary (Waldhausen additivity)

K(D) ~ K(€) x K(E).
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Extending the perspective:

Cobordisms categories with coefficients

Let F:Cat2, — 8 be an additive functor and (C,?) a Poincaré
co-category. Then the simplicial space FQ.(C,2M]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.

° ?Q.(G,Q[l]) is complete if F is limit preserving, but not in general.

e Cob(€,?) = Cob"™(€,9).

o If F is additive and group-like then by isotropic decomposition
FQ.(€,2M) = F(e, o) x F(Hyp(€))"

is not just a Segal object, but a groupoid object, which is the action
groupoid (known also as the bar construction) associated to the
translation action of F(Hyp(C)) on J(€,9M]) via the map induced by
the Poincaré functor Hyp(€) — (€, 2[) sending (X, Y) = X @ Doy Y.
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Towards a Grothendieck-Witt spectrum

Extending the perspective:

Cobordisms categories with coefficients

Let F:Cat2, — 8 be an additive functor and (C,?) a Poincaré
co-category. Then the simplicial space FQ.(C,2M]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.

° ?Q.(G,Q[l]) is complete if F is limit preserving, but not in general.

e Cob(€,?) = Cob"™(€,9).

o If F is additive and group-like then by isotropic decomposition
FQ.(€,2M) = F(e, o) x F(Hyp(€))"

is not just a Segal object, but a groupoid object, which is the action
groupoid (known also as the bar construction) associated to the
translation action of F(Hyp(C)) on J(€,9M]) via the map induced by
the Poincaré functor Hyp(€) — (€, 2[) sending (X, Y) = X @ Doy Y.
It is complete in this case if and only if F(Hyp(C)) =0.
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Generalized additivity

Cobordisms categories with coefficients

Let F: Catl, — 8 be an additive functor and (C,?) a Poincaré
co-category. Then the simplicial space FQ.(C,21]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.
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Generalized additivity

Cobordisms categories with coefficients
Let F: Catl, — 8 be an additive functor and (C,?) a Poincaré

co-category. Then the simplicial space FQ,(C,9[!]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.

4

The generalized fibration theorem

For every additive F: Cat®, — § the functor Cob” (=) sends split
Poincaré-Verdier projections to bicartesian fibrations.
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Let F: Catl, — 8 be an additive functor and (C,?) a Poincaré

co-category. Then the simplicial space FQ,(C,9[!]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.

| A

The generalized fibration theorem

For every additive F: Cat®, — § the functor Cob” (=) sends split
Poincaré-Verdier projections to bicartesian fibrations.

v

For every additive F: Cat®, — § the functor |Cob” (-)| is additive.
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Generalized additivity

Cobordisms categories with coefficients

Let F: Catl, — 8 be an additive functor and (C,?) a Poincaré
co-category. Then the simplicial space FQ.(C,21]) is a Segal space.
Define Cob” (€, 9) to be the associated co-category.

4

The generalized fibration theorem

For every additive F: Cat®, — § the functor Cob” (=) sends split
Poincaré-Verdier projections to bicartesian fibrations.

For every additive F: Cat®, — § the functor |Cob” (-)| is additive.

= We can iterate this construction.
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From spaces to spectra

For :Catt, — 8 additive the commutative square

X——>[0< X —0]

m m

(C,9) —— Q (e, 9

i i

00— (G, 91y x (e, oMt

induces a natural map

F(C,9) » Q|Cob” (€,9)).
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Let F:Cat®, — 8 be an additive functor. If F is group-like then
|Cob” (<)| is group-like and F = Q|Cob” (<)| is an equivalence.

Proof.

| 5\

o Since F is group-like FQ,(€,?)) is the action groupoid of
F(Hyp(@)) acting on F(€,9M1]), and its geometric realization is hence
a model for the cofiber of F(Hyp(C)) - F(C,2M1]) in E,-groups.

o
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F(Hyp(@)) acting on F(€,9M1]), and its geometric realization is hence
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Let F:Cat®, — 8 be an additive functor. If F is group-like then
|Cob” (<)| is group-like and F = Q|Cob” (<)| is an equivalence.

Proof

o Since F is group-like FQ,(€,?)) is the action groupoid of
F(Hyp(@)) acting on F(€,9M1]), and its geometric realization is hence
a model for the cofiber of F(Hyp(C)) - F(C,2M1]) in E,-groups.

@ Since J is additive and group like we have
F(Hyp(@)) =~ F(Met(C,2M1)) and hence we can |dent|fy this cofiber
with the cofiber of the map F(Met(C, ?[*)) - F(e,9M]).

@ To finish the proof we need to show that the sequence

F(€,9) » F(Met(e, 21y - F(e, ol

is a fiber sequence of E.-groups.
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Let F:Cat®, — 8 be an additive functor. If F is group-like then
|Cob” (<)| is group-like and F = Q|Cob” (<)| is an equivalence.

Proof
o Since F is group-like FQ,(€,?)) is the action groupoid of
F(Hyp(@)) acting on F(€,9M1]), and its geometric realization is hence
a model for the cofiber of F(Hyp(C)) - F(C,2M1]) in E,-groups.
@ Since J is additive and group like we have
F(Hyp(@)) =~ F(Met(C,2M1)) and hence we can |dent|fy this cofiber
with the cofiber of the map F(Met(€,9[1])) > F(e, ).

@ To finish the proof we need to show that the sequence

F(€,9) » F(Met(e, 21y - F(e, ol

is a fiber sequence of E.-groups.

@ This follows from the additivity of F applied in the case of metabolic
sequence of (C, ().
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Delooping group-like additive functors

For F additive and group-like we have an equivalence F = Q|Cob” (-)|.
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Delooping group-like additive functors

Summary

For F additive and group-like we have an equivalence F = Q|Cob” (-)].

For F:Catl, — 8 additive and group-like, define
Cob”:Cath, - Sp  (€,?) ~ (Fo(C,2),F1(€,9),..,)

with Fo = F and F,(C,?) := [Cob”"* (€&, ®)| for n> 1. Structure maps
F,(C,9) = QF,.1(C,9?) given as above.
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Delooping group-like additive functors

For F additive and group-like we have an equivalence F = Q|Cob” (-)].
For F:Catl, — 8 additive and group-like, define
Cob”:Catl, > 8p  (€,2) = (F0(C,9),51(C,9),...,)

with Fo = F and F,(C,?) := [Cob”"* (€&, ®)| for n> 1. Structure maps
F,(C,9) = QF,.1(C,9?) given as above.

For any group-like additive functor F: Cat? — 8§ we have that
Cob”: Cat?, — 8p is additive and Q=Cob” ~ F.
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Delooping group-like additive functors

Summary

For F additive and group-like we have an equivalence F = Q|Cob” (-)].

For F:Catl, — 8 additive and group-like, define
Cob”:Cath, - Sp  (€,?) ~ (Fo(C,2),F1(€,9),..,)

with Fo = F and F,(C,?) := [Cob”"* (€&, ®)| for n> 1. Structure maps
F,(C,9) = QF,.1(C,9?) given as above.

4

For any group-like additive functor F: Cat? — 8§ we have that
Cob”: Cat?, — 8p is additive and Q=Cob” ~ F.

\

= A group-like additive functor has a distinguished additive delooping.
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Delooping group-like additive functors

For F additive and group-like we have an equivalence F = Q|Cob” (-)|.

Definition

For F:Catl, — 8 additive and group-like, define
Cob”:Catk, »8p  (€,2) = (F0(C,9),51(C,9),...,)

with Fo = F and F,(C,?) := [Cob”"* (€&, ®)| for n > 1. Structure maps
F,(C,9) > QF,.1(C,9?) given as above.

Observation

For any group-like additive functor F: Cat?, — 8 we have that
Cob”: CatP, > 8p is additive and Q*Cob” ~ 7.

= A group-like additive functor has a distinguished though not unique
additive delooping.
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The Grothendieck-Witt spectrum

Definition

We define the Grothendieck-Witt spectrum functor GW: Cat?, — Sp by
GW(C,9) := CobI™ (@, 9).
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The Grothendieck-Witt spectrum

Definition
We define the Grothendieck-Witt spectrum functor GW: Cat?, — Sp by
GW(C,9) := CobI™ (@, 9).

e GW(-) is an additive functor from Cat®, to spectra.
@ It is the hermitian analogue of the algebraic K-spectrum K(€), which is
a connective spectrum such that Q= K(C) = X(C).
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The Grothendieck-Witt spectrum

Definition

We define the Grothendieck-Witt spectrum functor GW: Cat?, — Sp by
GW(C,9) := CobI™ (@, 9).

e GW(-) is an additive functor from Cat®, to spectra.

@ It is the hermitian analogue of the algebraic K-spectrum K(C), which is
a connective spectrum such that Q= K(C) = X(C).

@ By contract, GW(C,?) is not connective in general.

@ Schlichting defined a Grothendieck-Witt spectrum in the setting of
Z[%]—Iinear dg-categories. Our construction agrees with his in this
context.
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The Grothendieck-Witt spectrum

Definition

We define the Grothendieck-Witt spectrum functor GW: Cat?, — Sp by
GW(C,9) := CobI™ (@, 9).

GW(-) is an additive functor from Cat, to spectra.

It is the hermitian analogue of the algebraic K-spectrum K(C€), which is
a connective spectrum such that Q= K(C) = X(C).

By contract, GW(C,?) is not connective in general.

Schlichting defined a Grothendieck-Witt spectrum in the setting of
Z[%]—Iinear dg-categories. Our construction agrees with his in this
context.

A different type of a Grothendieck-Witt spectrum was defined by
Schlichting in the setting of exact categories. We believe it to be
equivalent to a localizing variant of GW in the Poincaré setting.
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The Grothendieck-Witt spectrum

Definition

We define the Grothendieck-Witt spectrum functor GW: Cat?, — Sp by
GW(C,9) := CobI™ (@, 9).

e GW(-) is an additive functor from Cat®, to spectra.

@ It is the hermitian analogue of the algebraic K-spectrum K(C), which is
a connective spectrum such that Q= K(C) = X(C).

By contract, GW(C,?) is not connective in general.

Schlichting defined a Grothendieck-Witt spectrum in the setting of
Z[%]—Iinear dg-categories. Our construction agrees with his in this
context.

A different type of a Grothendieck-Witt spectrum was defined by
Schlichting in the setting of exact categories. We believe it to be
equivalent to a localizing variant of GW in the Poincaré setting.

For the hyperbolic Poincaré co-category Hyp(C) one has a canonical
equivalence GW(Hyp(C)) ~ K(C).
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Spectral Bott-Genauer sequence

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

fgt

aw(e, o) 5 kee) 28 gw(e, Q)
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Spectral Bott-Genauer sequence

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

fgt

aw(e, o) 5 kee) 28 gw(e, Q)

Since K(C) is connective we obtain for i < 0 an isomorphism
GW;(€,9) = GW;_; (e, o[-,
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Spectral Bott-Genauer sequence

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

fgt

ow(e, oy B kee) B2 qwie, 9)

Since K(C) is connective We obtain for / <0 an isomorphism
GW;(€,9) = GW;_1(€,9[~]). Shifting ¢ and arguing by induction we get
that for n <0 we have

GW,(C,9) 2 GW,_1 (€, 9y = .. = Gw_y (e, el" 1)

~ coker[Ko(€) = GWo (€, o™ = Lo(€, 9" = L,(€,9).
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Spectral Bott-Genauer sequence

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

fgt

ow(e, oy B kee) B2 qwie, 9)

Since K(C) is connective We obtain for / <0 an isomorphism
GW;(€,9) = GW;_1(€,9[~]). Shifting ¢ and arguing by induction we get
that for n <0 we have

GW,(C,9) 2 GW,_1 (€, 9y = .. = Gw_y (e, el" 1)

~ coker[Ko(€) = GWo (€, o™ = Lo(€, 9" = L,(€,9).

The negative homotopy groups of GW(C,?) are the negative L-groups.
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Universality of Grothendieck-Witt theory




Universality of Grothendieck-Witt theory

Theorem (Universality for GW)

The natural transformation Pn = GW exhibits SW as the initial
group-like additive functor to spaces under Pn.
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The natural transformation Pn = GW exhibits SW as the initial
group-like additive functor to spaces under Pn.
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Theorem (Universality for GW)

The natural transformation ~>°Pn = GW exhibits GW as the initial
additive functor to spectra under ¥°°Pn.
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Proposition (Q-construction is suspension)
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Universality of Grothendieck-Witt theory

Theorem (Universality for GW)

The natural transformation Pn = GW exhibits SW as the initial
group-like additive functor to spaces under Pn.

A

Theorem (Universality for GW)

The natural transformation ~>°Pn = GW exhibits GW as the initial
additive functor to spectra under ¥°°Pn.

V.

Both of these theorems can be deduced from the following key statement:

Proposition (Q-construction is suspension)

The operation F ~ |Cob” (<)| = |F Q. (€, ?1))| realizes the suspension in
the co-category Fun®?(Cat®,,8) of space valued additive functors.

= GW is the loop-suspension of Pn in Fun®(Cat®, 8). GW is the
suspension spectrum of GW.

Yonatan Harpaz



Proof of the key statement

Proposition (Q-construction is suspension)

The operation F ~ |Cob” ()| = [T Q. (€, ™)| realizes the suspension in
the co-category Fun®?(Cat®,,8) of space valued additive functors.
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Proof of the key statement

Proposition (Q-construction is suspension)

The operation F ~ |Cob” ()| = [T Q. (€, ™)| realizes the suspension in
the co-category Fun®?(Cat®,,8) of space valued additive functors.

Define Poincaré oco-categories Null,(C,?) as the fiber of
’g:Qn+1(679) - QO(ea?) = (679),
where ip:[0] = [n] has image {0}.
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Proof of the key statement

Proposition (Q-construction is suspension)

The operation F ~ |Cob” ()| = [T Q. (€, ™)| realizes the suspension in
the co-category Fun®?(Cat®,,8) of space valued additive functors.

Define Poincaré oco-categories Null,(C,?) as the fiber of
’g:Qn+1(679) - QO(ea?) = (679)

where fp:[0] — [n] has image {0}. One obtains a square of simplicial
Poincaré oo-categories

(€,9) —— Null,(€,2lM)

L

0— Q.(¢,9M)

where the right vertical map is restricted from the face maps
d0: Qo+1(€79[1]) - Q0(€79[1})
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Proof of the key statement

Goal: show that if F:Cat? — § is additive then

F(=) —= |F Null, (=[1)] = |Cobg,(-)| = *
* —— |FQ. (-1 = |Cob” (-)]

is cocartesian in Funadd(CatEo,S). Here the top right corner is

contractible since Cobg/(&?) has an initial object.

Yonatan Harpaz



Proof of the key statement

Goal: show that if F:Cat? — § is additive then
F(=) —= |F Null, (=[1)] = |Cobg,(-)| = *
Q1)) = [Cob7(-))

is cocartesian in Funadd(CatEo,S). Here the top right corner is
contractible since Cobg/(&?) has an initial object.

The operation ¥~ FQ,(-) has a right adjoint F—» FQ"(-), given by
the dual Q-construction.
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The dual Q-construction

The operation F = FQ,(-) has a right adjoint ¥~ FQ"(-), given by
the dual Q-construction.
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The operation F = FQ,(-) has a right adjoint ¥~ FQ"(-), given by
the dual Q-construction.

° Ql(G,Q) is the Poincaré co-category whose objects are cospans with
hermitian structure given by 91 ([X — W < X'] = (X)) o(w) 2(X).
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encoding sequences of n composable cospans with hermitian structure
given by a colimit on the diagram.
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The dual Q-construction

The operation F = FQ,(-) has a right adjoint ¥~ FQ"(-), given by
the dual Q-construction.

° Ql((:’,Q) is the Poincaré co-category whose objects are cospans with
hermitian structure given by 91 ([X — W < X'] = (X)) o(w) 2(X).

@ Similarly, Q"(C,?) can be described as the co-category of diagrams
encoding sequences of n composable cospans with hermitian structure
given by a colimit on the diagram.

@ There is also a dual to Null,(€,?) which sits in a split Poincaré-Verdier
sequence of the form

(€,92)=Q%C,Q) > Q™(€,9) —» Null"(€,9)
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End of proof

Mapping into a test object § and using adjunction, it will suffice to show
that for G additive the square

Tot[§ Q®(~1"1)] —— Tot[§ Null*(-[-11)]

* 5(-)

is a fiber square of additive functors.
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Mapping into a test object § and using adjunction, it will suffice to show
that for G additive the square

Tot[§ Q®(~1"1)] —— Tot[§ Null*(-[-11)]

| |

* 5(-)

is a fiber square of additive functors. Since totalizations preserve pullback
fiber squares we can check this levelwise.

G(Q"(€,2H)) - g(Null"(e,91)) - §(€,9)

is a fiber sequence.

Since § is additive, it will suffice to verify that
Q"(€, ) - Null"(e, 91 - (e,9)

is split Poincaré-Verdier sequence.
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End of proof

Mapping into a test object § and using adjunction, it will suffice to show
that for G additive the square

Tot[§ Q®(~1"1)] —— Tot[§ Null*(-[-11)]

| |

* 5(-)

is a fiber square of additive functors. Since totalizations preserve pullback
fiber squares we can check this levelwise.

G(Q"(€,2H)) - g(Null"(e,91)) - §(€,9)

is a fiber sequence.

Since § is additive, it will suffice to verify that
Q"(€, ) - Null"(e, 91 - (e,9)
is split Poincaré-Verdier sequence. This can be deduced from the dual

statement by applying to general principles, but can also be verified by
hand once all definitions are unwind.
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