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New perspectives on K- and L-theory, Sep. 2020

Joint work with Baptiste Calmès, Emanuele Dotto, Fabian Hebestreit,
Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus and
Wolfgang Steimle.

Yonatan Harpaz



Recollection: Poincaré ∞-categories

A hermitian ∞-category is a stable ∞-category C equipped with a
hermitian structure, that is a quadratic (reduced and 2-excisive)
functor Ϙ∶Cop → Sp.

A hermitian functor (f , η)∶ (C,Ϙ) → (C′,Ϙ′) consists of an exact functor
f ∶C→ C′ and a natural transformation η∶Ϙ⇒ f ∗Ϙ′.

(C,Ϙ) is Poincaré if there exists an equivalence of ∞-categories
D∶Cop → C together with a natural equivalence

BϘ(X ,Y ) ≃ homC(X ,DY )
D = DϘ is essentially uniquely determined by Ϙ, and is called the duality
associated to Ϙ.
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(C,Ϙ) is Poincaré if there exists an equivalence of ∞-categories
D∶Cop → C together with a natural equivalence

BϘ(X ,Y ) ≃ homC(X ,DY )
D = DϘ is essentially uniquely determined by Ϙ, and is called the duality
associated to Ϙ.

Yonatan Harpaz



The category of Poincaré ∞-categories

Any hermitian functor (f , η)∶ (C,Ϙ) → (C′,Ϙ′) between Poincaré
∞-categories determines a natural transformation

τη ∶ fDϘ ⇒ DϘ′ f
op.

We say that (f , η) is a Poincaré functor if τη is an equivalence.

The collection of Poincaré ∞-categories and Poincaré functors can be
organized into a (large) ∞-category Catp

∞
.

Proposition

The ∞-category Catp
∞

admits small limits and colimits, and the forgetful
functor

Catp
∞
→ Catex

∞

preserves small limits and colimits, where Catex
∞

is the ∞-category of
stable ∞-categories and exact functors.
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Group-like functors

The ∞-category Catp
∞

is semi-additive - its has a zero object and
products and coproducts coincide.

⇒ Every product preserving functor Catp
∞
→ E lifts canonically to a

functor Catp
∞
→MonE∞(E) to E∞-monoids in E.

Definition

We say that a product preserving functor F∶Catp
∞
→ E is group-like if its

refinement to MonE∞(E) takes values in group-like monoid objects.

The loops of any monoid object is group-like. In particular:

Example

The product preserving functor (C,Ϙ) ↦ GW(C,Ϙ) = Ω∣Cob(C,Ϙ)∣ is
group-like.

Non-example

The functor Pn(−) is product preserving but not group-like.
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Poincaré-Verdier sequences

Definition

A sequence of Poincaré functors

(C,Ϙ) (f ,η)ÐÐÐ→ (D,Φ) (p,ϑ)ÐÐÐ→ (E,Ψ)
with vanishing composite is called a Poincaré-Verdier sequence if it is
both a fiber and a cofiber sequence in Catp

∞
. The sequence is said to

split if p admits both a left and a right adjoint.

Poincaré functors which feature on the left in (split) Poincaré-Verdier
sequences are called (split) Poincaré-Verdier inclusions, and those which
participate on the right (split) Poincaré-Verdier projections.

A functor (f , η)∶ (C,Ϙ) → (D,Φ) is a split Poincaré-Verdier inclusion if
and only if f is fully-faithful, admits a right adjoint, and η∶Ϙ⇒ f ∗Ϙ′ is
an equivalence.

A functor (p, ϑ)∶ (D,Φ) → (E,Ψ) is a split Poincaré-Verdier projection
if and only if p admits a fully-faithful left adjoint g ∶E→D and the

composed map g∗Ψ
g∗ϑÔ⇒ g∗p∗ΦÔ⇒ Φ is an equivalence.
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and only if f is fully-faithful, admits a right adjoint, and η∶Ϙ⇒ f ∗Ϙ′ is
an equivalence.

A functor (p, ϑ)∶ (D,Φ) → (E,Ψ) is a split Poincaré-Verdier projection
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A functor (f , η)∶ (C,Ϙ) → (D,Φ) is a split Poincaré-Verdier inclusion if
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Example

Definition

For a Poincaré ∞-category (C,Ϙ) define Met(C,Ϙ) to be the hermitian
∞-category whose objects are arrows L→ X in C and whose hermitian
structure is given by Ϙmet([L→ X ]) ∶= fib[Ϙ(X ) → Ϙ(L)].

Met(C,Ϙ) is Poincaré with Dmet([L→ X ]) = fib[DX → DL] → DX .

A hermitian object in Met(C,Ϙ) corresponds to a hermitian object
(X ,q), a map L→ X , and a null-homotopy η∶q∣L ∼ 0.

A hermitian object (L→ X ,q, η) is Poincaré if and only if (X ,q) is
Poincaré and η exhibits L as a Lagrangian in X .

We call Met(C,Ϙ) the metabolic Poincaré ∞-category of (C,Ϙ). Its
Poincaré objects correspond to metabolic Poincaré objects in (C,Ϙ).

The metabolic sequence

There is a canonical split Poincaré-Verdier sequence

(C,Ϙ[−1]) // Met(C,Ϙ) // (C,Ϙ)

[L→ X ] � // X

Yonatan Harpaz
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Met(C,Ϙ) is Poincaré with Dmet([L→ X ]) = fib[DX → DL] → DX .

A hermitian object in Met(C,Ϙ) corresponds to a hermitian object
(X ,q), a map L→ X , and a null-homotopy η∶q∣L ∼ 0.

A hermitian object (L→ X ,q, η) is Poincaré if and only if (X ,q) is
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For a Poincaré ∞-category (C,Ϙ) define Met(C,Ϙ) to be the hermitian
∞-category whose objects are arrows L→ X in C and whose hermitian
structure is given by Ϙmet([L→ X ]) ∶= fib[Ϙ(X ) → Ϙ(L)].
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For a Poincaré ∞-category (C,Ϙ) define Met(C,Ϙ) to be the hermitian
∞-category whose objects are arrows L→ X in C and whose hermitian
structure is given by Ϙmet([L→ X ]) ∶= fib[Ϙ(X ) → Ϙ(L)].
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Poincaré objects correspond to metabolic Poincaré objects in (C,Ϙ).
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Poincaré-Verdier squares

Definition

A commutative square of Poincaré ∞-categories

(C,Ϙ) //

��

(D,Φ)

��
(C′,Ϙ′) // (D′,Φ′)

is called a (split) Poincaré-Verdier square if it is cartesian and its vertical
legs are (split) Poincaré-Verdier projections.

Definition

Let E be an ∞-category with finite limits and F∶Catp
∞
→ E a functor

which preserves final objects. We say that F is Verdier-localizing if it
sends Poincaré-Verdier squares to fiber squares, and additive if it sends
split Poincaré-Verdier squares to fiber squares.

Example

The functor Pn∶Catp
∞
→ S is Verdier-localizing.

Yonatan Harpaz
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is called a (split) Poincaré-Verdier square if it is cartesian and its vertical
legs are (split) Poincaré-Verdier projections.
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split Poincaré-Verdier squares to fiber squares.

Example

The functor Pn∶Catp
∞
→ S is Verdier-localizing.

Yonatan Harpaz
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(C,Ϙ) //

��

(D,Φ)

��
(C′,Ϙ′) // (D′,Φ′)
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More examples

In the diamond diagram

(C,Ϙ)

s

��

id

$$JJJJJJJJJ

Met(C,Ϙ) //

&&LLLLLLLLLL
Q1(C,Ϙ)

d1 //

��

(C,Ϙ)

Hyp(C)
both the vertical and the horizontal sequence are split Poincaré-Verdier
sequences.

Here the bottom vertical functor sends

[X α←ÐW
βÐ→ X ′] ∈ Q1(C) to (fib[α],D cof[β]) ∈ C × Cop.

Corollary

If F∶Catp
∞
→ E is a group-like additive functor then

F(Q1(C,Ϙ)) ≃ F(C,Ϙ) × F(Met(C,Ϙ)) ≃ F(C,Ϙ) × F(Hyp(C))
and F(Met(C,Ϙ)) ≃ F(Hyp(C)).

Yonatan Harpaz



More examples

In the diamond diagram

(C,Ϙ)

s

��

id

$$JJJJJJJJJ

Met(C,Ϙ) //

&&LLLLLLLLLL
Q1(C,Ϙ)

d1 //

��

(C,Ϙ)

Hyp(C)
both the vertical and the horizontal sequence are split Poincaré-Verdier
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Additivity for the Grothendieck-Witt space

Goal: prove that the functor (C,Ϙ) ↦ GW(C,Ϙ) is additive.

The
analogous statement in the setting of exact categories with duality was
proven by Schlichting. Our approach is via cobordism ∞-categories:

The fibration theorem

If (D,Φ) → (E,Ψ) is a split Poincaré-Verdier projection then the induced
functor

p∗∶Cob(D,Φ) → Cob(E,Ψ)
is a bicartesian fibration.

When p∗ is a bicatersian fibration every cobordism
(X ,q) ← (W , η) → (X ′,q′)

in Catb(E,Ψ) induces an adjunction between the fibers of p∗ over (X ,q)
and (X ′,q′). Since every adjunction induces a homotopy equivalence on
realizations, the family of geometric realizations of fibers of p∗ is
constant up to homotopy over Cob(E,Ψ). It hence also coincides with
the homotopy fibers of the induced map ∣Cob(D,Φ)∣ → ∣Cob(E,Ψ)∣.

Corollary

The functors (C,Ϙ) ↦ ∣Cob(C,Ϙ)∣ and (C,Ϙ) ↦ GW(C,Ϙ) are additive.
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Proving the fibration theorem

To given an idea of the proof, let us just indicate how one can find
p∗-(co)cartesian edges in Cob(D,Φ). For this, we note that the fibration
theorem has a non-hermitian precursor:

Theorem (Barwick)

Let p∶D→ E be an exact functor which admits fully-faithful left and right
adjoints. Then the functor p∗∶Span(D) → Span(E) is a bicartesian
fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

Furthermore, a span X
α←ÐW

βÐ→ Y in D is p∗-cocartesian if and only if α
is p-cartesian and β is p-cocartesian, and is p∗-cartesian if this statement
holds with the role of α and β reversed. The following lemma will allow
us to refine p∗-(co)cartesian spans to cobordisms in the hermitian setting:

Lemma

Let (p, ϑ)∶ (D,Φ) → (E,Ψ) be a split Poincaré-Verdier projection and let
β∶W → Y be a p-cocartesian edge in D. Then the map
Φ(Y ) → Φ(W ) ×Ψ(p(W )) Ψ(p(Y )) is an equivalence.
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Proving the fibration theorem

Lemma

Let (p, ϑ)∶ (D,Φ) → (E,Ψ) be a split Poincaré-Verdier projection and let
β∶W → Y be a p-cocartesian edge in D. Then the map
Φ(Y ) → Φ(W ) ×Ψ(p(W )) Ψ(p(Y )) is an equivalence.

Proof.

Let g ∶E→D be a fully-faithful left adjoint to p. Then an arrow
β∶W → Y is p-cocartesian if and only if the square

gp(W )
gp(β)//

ν��

gp(Y )
ν��

W
β // Y

is exact. By the identification Φ(g(−)) ≃ Ψ(−) it will suffice to show
that Φ sends the above square to an exact square of spectra. Since Φ is
quadratic, the obstruction to this is the spectrum

BΦ(cof[gp(β)], cof[ν]) = homD(cof[gp(β)],DΦ cof[ν])
= homE(cof[p(β)],DΨ cof[p(ν)]) = 0
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Proving the fibration theorem

Given a Poincaré object (X ,q) in (D,Φ) and a cobordism

(p(X ),p(q)) α←Ð (W , η) βÐ→ (Y , r)
in (E,Ψ), we construct a cocartesian lift in Cob(D,Φ) as follows.

We use that p∶D→ E is a bicartesian fibration to find a p-cartesian lift
α′∶W ′ → X of α and a p-cocartesian lift β∶W ′ → Y ′ of β.

Using the previous lemma we conclude that the space of hermitian
forms on X ←W ′ → Y ′ compatible with q, r and η is contractible.

Taking such a hermitian form (p, η′, r ′), we want to show that it is
Poincaré in Q1(D,Φ), that is, that we obtain a cobordism.

This is a
consequence of the following observation:

The duality on Q1(D,Φ) preserves the full subcategory consisting of the
spans which are cocartesian with respect to Span(D) → Span(E).

The unimoduarity of (p, η′, r ′) can then be deduced from the unicity of
cartesian and cocartesian lifts.

Yonatan Harpaz



Proving the fibration theorem
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Consequences of additivity

Summary

The functor Cob(−) sends split Poincaré-Verdier sequences to bicartesian
fibrations ⇒ the functor ∣Cob(−)∣ is additive ⇒ the functor GW(−) is
additive.

Corollary

GW(Met(C,Ϙ)) ≃ GW(Hyp(C)) ≃K(C).

GW(Q1(C,Ϙ)) ≃ GW(C,Ϙ) ×K(C).

Applying additivity in the case of the metabolic sequence yields a fiber
sequence

GW(C,Ϙ[−1])GW(C,Ϙ)
The Bott-Genauer sequence.
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Karoubi’s fundamental theorem

The space level Bott-Genauer sequence

GW(C,Ϙ[−1]) fgtÐ→ K(C) hypÐÐ→ GW(C,Ϙ)

Definition

For a Poincaré ∞-category (C,Ϙ) define

U(C,Ϙ) ∶= fib[K(C) hypÐÐ→ GW(C,Ϙ)]

V(C,Ϙ) ∶= fib[GW(C,Ϙ) fgtÐ→ K(C)].

In the setting of forms over rings, these homotopy fibers measuring the
gap between Grothendieck-Witt space and algebraic K-theory space were
defined and studied by Karoubi.

Karoubi’s fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

V(C,Ϙ) ≃ ΩU(C,Ϙ[2])

≃ ΩGW(C,Ϙ[1])
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For a Poincaré ∞-category (C,Ϙ) define

U(C,Ϙ) ∶= fib[K(C) hypÐÐ→ GW(C,Ϙ)]

V(C,Ϙ) ∶= fib[GW(C,Ϙ) fgtÐ→ K(C)].

In the setting of forms over rings, these homotopy fibers measuring the
gap between Grothendieck-Witt space and algebraic K-theory space were
defined and studied by Karoubi.

Karoubi’s fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

V(C,Ϙ) ≃ ΩU(C,Ϙ[2])

≃ ΩGW(C,Ϙ[1])

Yonatan Harpaz



Karoubi’s fundamental theorem

The space level Bott-Genauer sequence

GW(C,Ϙ[−1]) fgtÐ→ K(C) hypÐÐ→ GW(C,Ϙ)

Definition
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Karoubi’s conjecture

Karoubi’s fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

V(C,Ϙ) ≃ ΩU(C,Ϙ[2])

For R a ring and M an invertible module with involution over R one has
natural equivalences of Poincaré ∞-categories, yielding four types of
fundamental theorems for rings:

(Dp(R), (ϘqM)[2]) ≃ (Dp(R),Ϙq
−M)

⇒ Vq(R,M) ≃ ΩUq(R,−M)

(Dp(R), (ϘsM)[2]) ≃ (Dp(R),Ϙs
−M)

⇒ Vs(R,M) ≃ ΩUs(R,−M)

(Dp(R), (ϘgsM)[2]) ≃ (Dp(R),Ϙge
−M)

⇒ Vgs(R,M) ≃ ΩUge(R,−M)

(Dp(R), (ϘgeM )[2]) ≃ (Dp(R),Ϙgq
−M)

⇒ Vge(R,M) ≃ ΩUgq(R,−M)

When 1
2
∈ R these claims are all equivalent to the classical Kaourbi’s

fundamental theorem.

When 2 is not invertible, the last two statements apply to classical U-
and V-theory of rings.

They give a generalization of Karoubi’s
fundamental theorem conjectured by Karoubi and Giffen.
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More consequences of additivity

Definition

For (C,Ϙ) Poincaré, a full stable subcategory A ⊆ C is called isotropic if

Ϙ vanishes when restricted to A.

the inclusion A ⊆ C admits a right adjoint.

For A ⊆ C isotropic we have that

A ⊆ A⊥ = {Y ∈ C ∣ BϘ(X ,Y ) = 0 ∀X ∈ A}.
The Verdier quotient Hlgy(A) ∶= A⊥/A then acquires a canonical
Poincaré structure, and we call it the homology of A. A is called a
Lagrangian if A⊥ = A, i.e., if Hlgy(A) = 0.

Example

Met(C,Ϙ) admits a Lagrangian consisting of the equivalences L
≃Ð→ X

Q1(C,Ϙ) admits an isotropic subcategory consisting of the spans of the

form 0←W
≃Ð→ X . Its homology is canonically equivalence to (C,Ϙ).

Qn(C,Ϙ) admits an isotropic subcategory with homology Qn−1(C,Ϙ)
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Isotropic decomposition

Proposition

Let (C,Ϙ) be a Poincaré ∞-categorywith an isotropic subcategory A ⊆ C.
Then for a group-like additive functor F∶Catp

∞
→ E there is a canonical

decomposition

F(C,Ϙ) ≃ F(Hlgy(A)) × F(Hyp(A)).

Corollary

If (C,Ϙ) is a Poincaré ∞-category with isotropic subcategory A ⊆ C then

GW(C,Ϙ) ≃ GW(Hlgy(A)) ×K(A).

Example

For every group-like additive functor F∶Catp
∞
→ E we have

F(Qn(C,Ϙ)) ≃ F(C,Ϙ) × F(Hyp(C))n.
In particular

GW(Qn(C,Ϙ)) ≃ GW(C,Ϙ) ×K(C)n.
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Example: additivity of K-theory

Let C
iÐ→D

pÐ→ E be a fiber sequence of stable ∞-categories such that p
admits a fully-faithful right adjoint r ∶E→D.

⇒ the Poincaré ∞-category Hyp(D) admits a Lagrangian inclusion

(i , rop)∶C × Eop →D ×Dop.

Corollary

If F∶Catp
∞
→ E is a group-like additive functor then

F(Hyp(D)) ≃ F(Hyp(C)) × F(Hyp(E)).

Corollary (Waldhausen additivity)

K(D) ≃K(C) ×K(E).
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Towards a Grothendieck-Witt spectrum

Extending the perspective:

Cobordisms categories with coefficients

Let F∶Catp
∞
→ S be an additive functor and (C,Ϙ) a Poincaré

∞-category. Then the simplicial space FQ●(C,Ϙ[1]) is a Segal space.
Define CobF(C,Ϙ) to be the associated ∞-category.

FQ●(C,Ϙ[1]) is complete if F is limit preserving, but not in general.

Cob(C,Ϙ) = CobPn(C,Ϙ).

If F is additive and group-like then by isotropic decomposition

FQ●(C,Ϙ[1]) ≃ F(C,Ϙ[1]) × F(Hyp(C))●

is not just a Segal object, but a groupoid object, which is the action
groupoid (known also as the bar construction) associated to the
translation action of F(Hyp(C)) on F(C,Ϙ[1]) via the map induced by
the Poincaré functor Hyp(C) → (C,Ϙ[1]) sending (X ,Y ) ↦ X ⊕D

Ϙ[1]Y .

It is complete in this case if and only if F(Hyp(C)) = 0.
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Generalized additivity

Cobordisms categories with coefficients

Let F∶Catp
∞
→ S be an additive functor and (C,Ϙ) a Poincaré

∞-category. Then the simplicial space FQ●(C,Ϙ[1]) is a Segal space.
Define CobF(C,Ϙ) to be the associated ∞-category.

The generalized fibration theorem

For every additive F∶Catp
∞
→ S the functor CobF(−) sends split

Poincaré-Verdier projections to bicartesian fibrations.

Corollary

For every additive F∶Catp
∞
→ S the functor ∣CobF(−)∣ is additive.

⇒ We can iterate this construction.

Yonatan Harpaz
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Poincaré-Verdier projections to bicartesian fibrations.

Corollary

For every additive F∶Catp
∞
→ S the functor ∣CobF(−)∣ is additive.

⇒ We can iterate this construction.

Yonatan Harpaz



Generalized additivity

Cobordisms categories with coefficients

Let F∶Catp
∞
→ S be an additive functor and (C,Ϙ) a Poincaré
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From spaces to spectra

For F∶Catp
∞
→ S additive the commutative square

X∈

� // [0← X → 0]∈

(C,Ϙ) //

��

Q1(C,Ϙ[1])

��
0 // (C,Ϙ[1]) × (C,Ϙ[1])

induces a natural map

F(C,Ϙ) → Ω∣CobF(C,Ϙ)∣.

Lemma

Let F∶Catp
∞
→ S be an additive functor. If F is group-like then

∣CobF(−)∣ is group-like and F⇒ Ω∣CobF(−)∣ is an equivalence.
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Lemma

Let F∶Catp
∞
→ S be an additive functor. If F is group-like then

∣CobF(−)∣ is group-like and F⇒ Ω∣CobF(−)∣ is an equivalence.

Proof.

Since F is group-like FQ●(C,Ϙ[1]) is the action groupoid of
F(Hyp(C)) acting on F(C,Ϙ[1]), and its geometric realization is hence
a model for the cofiber of F(Hyp(C)) → F(C,Ϙ[1]) in E∞-groups.

Since F is additive and group-like we have
F(Hyp(C)) ≃ F(Met(C,Ϙ[1])) and hence we can identify this cofiber
with the cofiber of the map F(Met(C,Ϙ[1])) → F(C,Ϙ[1]).

To finish the proof we need to show that the sequence

F(C,Ϙ) → F(Met(C,Ϙ[1])) → F(C,Ϙ[1])

is a fiber sequence of E∞-groups.

This follows from the additivity of F applied in the case of metabolic
sequence of (C,Ϙ[1]).

Yonatan Harpaz
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Delooping group-like additive functors

Summary

For F additive and group-like we have an equivalence F
≃⇒ Ω∣CobF(−)∣.

Definition

For F∶Catp
∞
→ S additive and group-like, define

CobF ∶Catp
∞
→ Sp (C,Ϙ) ↦ (F0(C,Ϙ),F1(C,Ϙ), ..., )

with F0 = F and Fn(C,Ϙ) ∶= ∣CobFn−1(C,Ϙ)∣ for n ≥ 1. Structure maps

Fn(C,Ϙ)
≃Ð→ ΩFn+1(C,Ϙ) given as above.

Observation

For any group-like additive functor F∶Catp
∞
→ S we have that

CobF ∶Catp
∞
→ Sp is additive and Ω∞CobF ≃ F.

⇒ A group-like additive functor has a distinguished additive delooping.
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For F additive and group-like we have an equivalence F
≃⇒ Ω∣CobF(−)∣.

Definition

For F∶Catp
∞
→ S additive and group-like, define

CobF ∶Catp
∞
→ Sp (C,Ϙ) ↦ (F0(C,Ϙ),F1(C,Ϙ), ..., )

with F0 = F and Fn(C,Ϙ) ∶= ∣CobFn−1(C,Ϙ)∣ for n ≥ 1. Structure maps

Fn(C,Ϙ)
≃Ð→ ΩFn+1(C,Ϙ) given as above.
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∞
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The Grothendieck-Witt spectrum

Definition

We define the Grothendieck-Witt spectrum functor GW∶Catp
∞
→ Sp by

GW(C,Ϙ) ∶= CobGW(C,Ϙ).

GW(−) is an additive functor from Catp
∞

to spectra.
It is the hermitian analogue of the algebraic K-spectrum K(C), which is
a connective spectrum such that Ω∞ K(C) =K(C).
By contract, GW(C,Ϙ) is not connective in general.
Schlichting defined a Grothendieck-Witt spectrum in the setting of
Z[ 1

2
]-linear dg-categories. Our construction agrees with his in this

context.
A different type of a Grothendieck-Witt spectrum was defined by
Schlichting in the setting of exact categories. We believe it to be
equivalent to a localizing variant of GW in the Poincaré setting.

Example

For the hyperbolic Poincaré ∞-category Hyp(C) one has a canonical
equivalence GW(Hyp(C)) ≃ K(C).
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Example
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Spectral Bott-Genauer sequence

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

GW(C,Ϙ[−1]) fgtÐ→ K(C) hypÐÐ→ GW(C,Ϙ)

Since K(C) is connective we obtain for i < 0 an isomorphism
GWi(C,Ϙ) ≅ GWi−1(C,Ϙ[−1]). Shifting Ϙ and arguing by induction we get
that for n < 0 we have

GWn(C,Ϙ) ≅ GWn−1(C,Ϙ[1]) ≅ . . . ≅ GW−1(C,Ϙ[n−1])

≅ coker[K0(C) → GW0(C,Ϙ[n])] ≅ L0(C,Ϙ[n]) = Ln(C,Ϙ).

Corollary

The negative homotopy groups of GW(C,Ϙ) are the negative L-groups.

Yonatan Harpaz
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Universality of Grothendieck-Witt theory

Theorem (Universality for GW)

The natural transformation Pn⇒ GW exhibits GW as the initial
group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation Σ∞Pn⇒ GW exhibits GW as the initial
additive functor to spectra under Σ∞Pn.

Both of these theorems can be deduced from the following key statement:

Proposition (Q-construction is suspension)

The operation F ↦ ∣CobF(−)∣ = ∣FQ●(C,Ϙ[1])∣ realizes the suspension in
the ∞-category Funadd(Catp

∞
,S) of space valued additive functors.

⇒ GW is the loop-suspension of Pn in Funadd(Catp
∞
,S). GW is the

suspension spectrum of GW.
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Proof of the key statement

Proposition (Q-construction is suspension)

The operation F ↦ ∣CobF(−)∣ = ∣FQ●(C,Ϙ[1])∣ realizes the suspension in
the ∞-category Funadd(Catp

∞
,S) of space valued additive functors.

Define Poincaré ∞-categories Nulln(C,Ϙ) as the fiber of

i∗0 ∶Qn+1(C,Ϙ) → Q0(C,Ϙ) = (C,Ϙ),
where i0∶ [0] → [n] has image {0}. One obtains a square of simplicial
Poincaré ∞-categories

(C,Ϙ) //

��

Null●(C,Ϙ[1])

��
0 // Q●(C,Ϙ[1])

where the right vertical map is restricted from the face maps
d0∶Q●+1(C,Ϙ[1]) → Q●(C,Ϙ[1]).
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Proof of the key statement

Goal: show that if F∶Catp
∞
→ S is additive then

F(−) //

��

∣FNull●(−[1])∣

��

≃ ∣CobF0/(−)∣ ≃ ∗

∗ // ∣FQ●(−[1])∣ ≃ ∣CobF(−)∣

is cocartesian in Funadd(Catp
∞
,S). Here the top right corner is

contractible since CobF0/(C,Ϙ) has an initial object.

Idea

The operation F ↦ FQn(−) has a right adjoint F ↦ FQn(−), given by
the dual Q-construction.
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The dual Q-construction

Idea

The operation F ↦ FQn(−) has a right adjoint F ↦ FQn(−), given by
the dual Q-construction.

Q1(C,Ϙ) is the Poincaré ∞-category whose objects are cospans with
hermitian structure given by Ϙ1([X →W ← X ′] = Ϙ(X )∐Ϙ(W )

Ϙ(X ′).

Similarly, Qn(C,Ϙ) can be described as the ∞-category of diagrams
encoding sequences of n composable cospans with hermitian structure
given by a colimit on the diagram.

There is also a dual to Nulln(C,Ϙ) which sits in a split Poincaré-Verdier
sequence of the form

(C,Ϙ) = Q0(C,Q) → Qn+1(C,Ϙ) → Nulln(C,Ϙ)
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End of proof

Mapping into a test object G and using adjunction, it will suffice to show
that for G additive the square

Tot[GQ●(−[−1])∣ //

��

Tot[GNull●(−[−1])]

��
∗ // G(−)

is a fiber square of additive functors.

Since totalizations preserve pullback
fiber squares we can check this levelwise.

Claim

G(Qn(C,Ϙ[−1])) → G(Nulln(C,Ϙ[−1])) → G(C,Ϙ)
is a fiber sequence.

Since G is additive, it will suffice to verify that

Qn(C,Ϙ[−1]) → Nulln(C,Ϙ[−1]) → (C,Ϙ)
is split Poincaré-Verdier sequence. This can be deduced from the dual
statement by applying to general principles, but can also be verified by
hand once all definitions are unwind.
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is split Poincaré-Verdier sequence. This can be deduced from the dual
statement by applying to general principles, but can also be verified by
hand once all definitions are unwind.

Yonatan Harpaz


