New perspectives in hermitian K-theory II

Yonatan Harpaz

CNRS, Université Paris 13

New perspectives on K- and L-theory, Sep. 2020

Joint work with Baptiste Calmès, Emanuele Dotto, Fabian Hebestreit, Markus Land, Kristian Moi, Denis Nardin, Thomas Nikolaus and Wolfgang Steimle.

• A hermitian ∞ -category is a stable ∞ -category \mathcal{C} equipped with a hermitian structure, that is a quadratic (reduced and 2-excisive) functor $\mathfrak{L}: \mathcal{C}^{\mathrm{op}} \to \mathcal{S}p$.

- A hermitian ∞ -category is a stable ∞ -category $\mathfrak C$ equipped with a hermitian structure, that is a quadratic (reduced and 2-excisive) functor $\mathfrak C : \mathfrak C^{\mathrm{op}} \to \mathcal S p$.
- A hermitian functor (f, η) : $(\mathcal{C}, \Omega) \to (\mathcal{C}', \Omega')$ consists of an exact functor $f: \mathcal{C} \to \mathcal{C}'$ and a natural transformation $\eta: \Omega \to f^*\Omega'$.

- A hermitian ∞ -category is a stable ∞ -category $\mathfrak C$ equipped with a hermitian structure, that is a quadratic (reduced and 2-excisive) functor $\mathfrak C : \mathfrak C^{\mathrm{op}} \to \mathcal S p$.
- A hermitian functor (f, η) : $(\mathcal{C}, \Omega) \to (\mathcal{C}', \Omega')$ consists of an exact functor $f: \mathcal{C} \to \mathcal{C}'$ and a natural transformation $\eta: \Omega \to f^*\Omega'$.
- (\mathcal{C}, Ω) is *Poincaré* if there exists an equivalence of ∞ -categories $D: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ together with a natural equivalence

$$B_{\mathcal{Q}}(X,Y) \simeq \mathsf{hom}_{\mathcal{C}}(X,\mathcal{D}Y)$$

- A hermitian ∞ -category is a stable ∞ -category $\mathfrak C$ equipped with a hermitian structure, that is a quadratic (reduced and 2-excisive) functor $\mathfrak C : \mathfrak C^\mathrm{op} \to \mathcal S p$.
- A hermitian functor (f, η) : $(\mathcal{C}, \Omega) \to (\mathcal{C}', \Omega')$ consists of an exact functor $f: \mathcal{C} \to \mathcal{C}'$ and a natural transformation $\eta: \Omega \to f^*\Omega'$.
- (\mathcal{C}, Ω) is *Poincaré* if there exists an equivalence of ∞ -categories $D: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ together with a natural equivalence

$$B_{\mathfrak{D}}(X,Y) \simeq \mathsf{hom}_{\mathfrak{C}}(X,\mathcal{D}Y)$$

• $D = D_{\Omega}$ is essentially uniquely determined by Ω , and is called the *duality* associated to Ω .

Any hermitian functor (f,η) : $(\mathcal{C},\Omega) \to (\mathcal{C}',\Omega')$ between Poincaré ∞ -categories determines a natural transformation

$$\tau_{\eta}: f \mathcal{D}_{\mathbb{Q}} \Rightarrow \mathcal{D}_{\mathbb{Q}'} f^{\mathrm{op}}.$$

Any hermitian functor (f,η) : $(\mathcal{C},\Omega) \to (\mathcal{C}',\Omega')$ between Poincaré ∞ -categories determines a natural transformation

$$\tau_{\eta}: f \mathcal{D}_{\mathfrak{P}} \Rightarrow \mathcal{D}_{\mathfrak{P}'} f^{\mathrm{op}}.$$

We say that (f, η) is a *Poincaré functor* if τ_{η} is an equivalence.

Any hermitian functor (f,η) : $(\mathcal{C},\Omega) \to (\mathcal{C}',\Omega')$ between Poincaré ∞ -categories determines a natural transformation

$$\tau_{\eta}: f \mathcal{D}_{\mathcal{Q}} \Rightarrow \mathcal{D}_{\mathcal{Q}'} f^{\mathrm{op}}.$$

We say that (f, η) is a *Poincaré functor* if τ_{η} is an equivalence.

The collection of Poincaré ∞ -categories and Poincaré functors can be organized into a (large) ∞ -category $\operatorname{Cat}^p_\infty$.

Any hermitian functor (f,η) : $(\mathcal{C},\Omega) \to (\mathcal{C}',\Omega')$ between Poincaré ∞ -categories determines a natural transformation

$$\tau_{\eta}: f \mathcal{D}_{\mathcal{Q}} \Rightarrow \mathcal{D}_{\mathcal{Q}'} f^{\mathrm{op}}.$$

We say that (f, η) is a *Poincaré functor* if τ_{η} is an equivalence.

The collection of Poincaré ∞ -categories and Poincaré functors can be organized into a (large) ∞ -category $\operatorname{Cat}^p_\infty$.

Proposition

The ∞ -category Cat_∞^p admits small limits and colimits, and the forgetful functor

$$\operatorname{Cat}^{\operatorname{p}}_{\infty} \to \operatorname{Cat}^{\operatorname{ex}}_{\infty}$$

preserves small limits and colimits, where $\mathrm{Cat}_\infty^\mathrm{ex}$ is the ∞ -category of stable ∞ -categories and exact functors.

The $\infty\text{-category }\mathrm{Cat}_\infty^p$ is semi-additive - its has a zero object and products and coproducts coincide.

The $\infty\text{-category }\mathrm{Cat}_\infty^p$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to Mon_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $\mathrm{Cat}^p_\infty \to \mathcal{E}$ lifts canonically to a functor $\mathrm{Cat}^p_\infty \to \mathsf{Mon}_{\mathrm{E}_\infty}(\mathcal{E})$ to E_∞ -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{E}$ is *group-like* if its refinement to $\mathrm{Mon}_{\mathrm{E}_\infty}(\mathcal{E})$ takes values in group-like monoid objects.

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to \mathsf{Mon}_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathfrak{F}\colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{E}$ is group-like if its refinement to $\mathrm{Mon}_{\mathrm{E}_{\infty}}(\mathcal{E})$ takes values in group-like monoid objects (i.e., those whose associated shear map $X \times X \to X \times X$ is an equivalence).

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to \mathsf{Mon}_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathfrak{F}\colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{E}$ is group-like if its refinement to $\mathrm{Mon}_{\mathrm{E}_{\infty}}(\mathcal{E})$ takes values in group-like monoid objects (i.e., those whose associated shear map $X \times X \to X \times X$ is an equivalence).

The loops of any monoid object is group-like.

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to \mathsf{Mon}_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathfrak{F}\colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{E}$ is group-like if its refinement to $\mathrm{Mon}_{\mathrm{E}_{\infty}}(\mathcal{E})$ takes values in group-like monoid objects (i.e., those whose associated shear map $X \times X \to X \times X$ is an equivalence).

The loops of any monoid object is group-like. In particular:

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to \mathsf{Mon}_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathfrak{F}\colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{E}$ is group-like if its refinement to $\mathrm{Mon}_{\mathrm{E}_{\infty}}(\mathcal{E})$ takes values in group-like monoid objects (i.e., those whose associated shear map $X \times X \to X \times X$ is an equivalence).

The loops of any monoid object is group-like. In particular:

Example

The product preserving functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega) = \Omega|\mathrm{Cob}(\mathcal{C}, \Omega)|$ is group-like.

The ∞ -category $\mathrm{Cat}_\infty^\mathrm{p}$ is semi-additive - its has a zero object and products and coproducts coincide.

 \Rightarrow Every product preserving functor $Cat_{\infty}^{p} \to \mathcal{E}$ lifts canonically to a functor $Cat_{\infty}^{p} \to \mathsf{Mon}_{E_{\infty}}(\mathcal{E})$ to E_{∞} -monoids in \mathcal{E} .

Definition

We say that a product preserving functor $\mathcal{F}\colon \mathrm{Cat}^p_\infty \to \mathcal{E}$ is *group-like* if its refinement to $\mathrm{Mon}_{\mathrm{E}_\infty}(\mathcal{E})$ takes values in group-like monoid objects (i.e., those whose associated shear map $X\times X\to X\times X$ is an equivalence).

The loops of any monoid object is group-like. In particular:

Example

The product preserving functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega) = \Omega|\mathrm{Cob}(\mathcal{C}, \Omega)|$ is group-like.

Non-example

The functor Pn(-) is product preserving but not group-like.

Definition

A sequence of Poincaré functors

$$(\mathcal{C}, \mathcal{Y}) \xrightarrow{(f, \eta)} (\mathcal{D}, \Phi) \xrightarrow{(p, \vartheta)} (\mathcal{E}, \Psi)$$

with vanishing composite is called a *Poincaré-Verdier sequence* if it is both a fiber and a cofiber sequence in $\operatorname{Cat}_\infty^p$. The sequence is said to *split* if p admits both a left and a right adjoint.

Definition

A sequence of Poincaré functors

$$(\mathcal{C}, \mathcal{Y}) \xrightarrow{(f, \eta)} (\mathcal{D}, \Phi) \xrightarrow{(p, \vartheta)} (\mathcal{E}, \Psi)$$

with vanishing composite is called a *Poincaré-Verdier sequence* if it is both a fiber and a cofiber sequence in $\operatorname{Cat}_\infty^p$. The sequence is said to *split* if p admits both a left and a right adjoint.

Poincaré functors which feature on the left in (split) Poincaré-Verdier sequences are called (split) *Poincaré-Verdier inclusions*, and those which participate on the right (split) *Poincaré-Verdier projections*.

Definition

A sequence of Poincaré functors

$$(\mathcal{C}, \mathcal{Y}) \xrightarrow{(f, \eta)} (\mathcal{D}, \Phi) \xrightarrow{(p, \vartheta)} (\mathcal{E}, \Psi)$$

with vanishing composite is called a *Poincaré-Verdier sequence* if it is both a fiber and a cofiber sequence in $\operatorname{Cat}^p_\infty$. The sequence is said to *split* if p admits both a left and a right adjoint.

Poincaré functors which feature on the left in (split) Poincaré-Verdier sequences are called (split) *Poincaré-Verdier inclusions*, and those which participate on the right (split) *Poincaré-Verdier projections*.

• A functor $(f,\eta)\colon (\mathcal{C},\Omega)\to (\mathcal{D},\Phi)$ is a split Poincaré-Verdier inclusion if and only if f is fully-faithful, admits a right adjoint, and $\eta\colon \Omega\Rightarrow f^*\Omega'$ is an equivalence.

Definition

A sequence of Poincaré functors

$$(\mathcal{C}, \mathcal{Y}) \xrightarrow{(f,\eta)} (\mathcal{D}, \Phi) \xrightarrow{(p,\vartheta)} (\mathcal{E}, \Psi)$$

with vanishing composite is called a *Poincaré-Verdier sequence* if it is both a fiber and a cofiber sequence in $\operatorname{Cat}^p_\infty$. The sequence is said to *split* if p admits both a left and a right adjoint.

Poincaré functors which feature on the left in (split) Poincaré-Verdier sequences are called (split) *Poincaré-Verdier inclusions*, and those which participate on the right (split) *Poincaré-Verdier projections*.

- A functor (f,η) : $(\mathcal{C},\Omega) \to (\mathcal{D},\Phi)$ is a split Poincaré-Verdier inclusion if and only if f is fully-faithful, admits a right adjoint, and $\eta \colon \Omega \Rightarrow f^*\Omega'$ is an equivalence.
- A functor $(p,\vartheta)\colon (\mathcal{D},\Phi) \to (\mathcal{E},\Psi)$ is a split Poincaré-Verdier projection if and only if p admits a fully-faithful left adjoint $g\colon \mathcal{E} \to \mathcal{D}$ and the composed map $g^*\Psi \stackrel{g^*\vartheta}{\Longrightarrow} g^*p^*\Phi \Longrightarrow \Phi$ is an equivalence.

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\mathrm{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\mathrm{met}}([L \to X]) \coloneqq \mathrm{fib}[\Omega(X) \to \Omega(L)]$.

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\operatorname{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\operatorname{met}}([L \to X]) \coloneqq \operatorname{fib}[\Omega(X) \to \Omega(L)]$.

• $\mathsf{Met}(\mathcal{C}, \Omega)$ is Poincaré with $D_{\mathrm{met}}([L \to X]) = \mathsf{fib}[DX \to DL] \to DX$.

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\operatorname{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\operatorname{met}}([L \to X]) \coloneqq \operatorname{fib}[\Omega(X) \to \Omega(L)]$.

- $\mathsf{Met}(\mathcal{C}, \Omega)$ is Poincaré with $D_{\mathrm{met}}([L \to X]) = \mathsf{fib}[DX \to DL] \to DX$.
- A hermitian object in $Met(\mathcal{C}, \Omega)$ corresponds to a hermitian object (X, q), a map $L \to X$, and a null-homotopy $\eta: q|_{L} \sim 0$.

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\mathsf{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\mathrm{met}}([L \to X]) \coloneqq \mathsf{fib}[\Omega(X) \to \Omega(L)]$.

- $\mathsf{Met}(\mathcal{C}, \Omega)$ is Poincaré with $D_{\mathrm{met}}([L \to X]) = \mathsf{fib}[DX \to DL] \to DX$.
- A hermitian object in $Met(\mathcal{C}, \Omega)$ corresponds to a hermitian object (X, q), a map $L \to X$, and a null-homotopy $\eta: q|_{L} \sim 0$.
- A hermitian object $(L \to X, q, \eta)$ is Poincaré if and only if (X, q) is Poincaré and η exhibits L as a Lagrangian in X.

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\operatorname{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\operatorname{met}}([L \to X]) \coloneqq \operatorname{fib}[\Omega(X) \to \Omega(L)]$.

- $\mathsf{Met}(\mathcal{C}, \Omega)$ is Poincaré with $D_{\mathrm{met}}([L \to X]) = \mathsf{fib}[DX \to DL] \to DX$.
- A hermitian object in $Met(\mathcal{C}, \Omega)$ corresponds to a hermitian object (X, q), a map $L \to X$, and a null-homotopy $\eta: q|_{L} \sim 0$.
- A hermitian object $(L \to X, q, \eta)$ is Poincaré if and only if (X, q) is Poincaré and η exhibits L as a Lagrangian in X.

We call $Met(\mathcal{C}, \Omega)$ the *metabolic Poincaré* ∞ -category of (\mathcal{C}, Ω) . Its Poincaré objects correspond to metabolic Poincaré objects in (\mathcal{C}, Ω) .

Definition

For a Poincaré ∞ -category (\mathcal{C}, Ω) define $\mathsf{Met}(\mathcal{C}, \Omega)$ to be the hermitian ∞ -category whose objects are arrows $L \to X$ in \mathcal{C} and whose hermitian structure is given by $\Omega_{\mathrm{met}}([L \to X]) \coloneqq \mathsf{fib}[\Omega(X) \to \Omega(L)]$.

- $\mathsf{Met}(\mathcal{C}, \Omega)$ is Poincaré with $D_{\mathrm{met}}([L \to X]) = \mathsf{fib}[DX \to DL] \to DX$.
- A hermitian object in $Met(\mathcal{C}, \Omega)$ corresponds to a hermitian object (X, q), a map $L \to X$, and a null-homotopy $\eta: q|_{L} \sim 0$.
- A hermitian object $(L \to X, q, \eta)$ is Poincaré if and only if (X, q) is Poincaré and η exhibits L as a Lagrangian in X.

We call $Met(\mathcal{C}, \Omega)$ the *metabolic Poincaré* ∞ -category of (\mathcal{C}, Ω) . Its Poincaré objects correspond to metabolic Poincaré objects in (\mathcal{C}, Ω) .

The metabolic sequence

There is a canonical split Poincaré-Verdier sequence

$$(\mathcal{C}, \Omega^{[-1]}) \longrightarrow \mathsf{Met}(\mathcal{C}, \Omega) \longrightarrow (\mathcal{C}, \Omega)$$
$$[L \to X] \longmapsto X$$

Poincaré-Verdier squares

Definition

A commutative square of Poincaré ∞-categories

$$(\mathfrak{C}, \mathfrak{P}) \longrightarrow (\mathfrak{D}, \Phi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathfrak{C}', \mathfrak{P}') \longrightarrow (\mathfrak{D}', \Phi')$$

is called a (split) Poincaré-Verdier square if it is cartesian and its vertical legs are (split) Poincaré-Verdier projections.

Poincaré-Verdier squares

Definition

A commutative square of Poincaré ∞-categories

$$(\mathfrak{C}, \mathfrak{P}) \longrightarrow (\mathfrak{D}, \Phi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathfrak{C}', \mathfrak{P}') \longrightarrow (\mathfrak{D}', \Phi')$$

is called a (split) Poincaré-Verdier square if it is cartesian and its vertical legs are (split) Poincaré-Verdier projections.

Definition

Let $\mathcal E$ be an ∞ -category with finite limits and $\mathcal F\colon \mathrm{Cat}^p_\infty \to \mathcal E$ a functor which preserves final objects. We say that $\mathcal F$ is $\mathit{Verdier-localizing}$ if it sends Poincaré-Verdier squares to fiber squares, and $\mathit{additive}$ if it sends split Poincaré-Verdier squares to fiber squares.

Poincaré-Verdier squares

Definition

A commutative square of Poincaré ∞-categories

$$(\mathfrak{C}, \mathfrak{P}) \longrightarrow (\mathfrak{D}, \Phi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathfrak{C}', \mathfrak{P}') \longrightarrow (\mathfrak{D}', \Phi')$$

is called a (split) Poincaré-Verdier square if it is cartesian and its vertical legs are (split) Poincaré-Verdier projections.

Definition

Let $\mathcal E$ be an ∞ -category with finite limits and $\mathcal F{:}\operatorname{Cat}^p_\infty \to \mathcal E$ a functor which preserves final objects. We say that $\mathcal F$ is $\mathit{Verdier-localizing}$ if it sends Poincaré-Verdier squares to fiber squares, and $\mathit{additive}$ if it sends split Poincaré-Verdier squares to fiber squares.

Example

The functor $\operatorname{Pn}:\operatorname{Cat}^p_\infty\to \mathcal{S}$ is Verdier-localizing.

More examples

In the diamond diagram

both the vertical and the horizontal sequence are split Poincaré-Verdier sequences.

More examples

In the diamond diagram

both the vertical and the horizontal sequence are split Poincaré-Verdier sequences. Here the bottom vertical functor sends

$$[X \stackrel{\alpha}{\leftarrow} W \stackrel{\beta}{\rightarrow} X'] \in Q_1(\mathcal{C}) \text{ to } (fib[\alpha], D \operatorname{cof}[\beta]) \in \mathcal{C} \times \mathcal{C}^{\operatorname{op}}.$$

More examples

In the diamond diagram

both the vertical and the horizontal sequence are split Poincaré-Verdier sequences. Here the bottom vertical functor sends

$$[X \stackrel{\alpha}{\leftarrow} W \stackrel{\beta}{\rightarrow} X'] \in Q_1(\mathcal{C}) \text{ to } (fib[\alpha], D \operatorname{cof}[\beta]) \in \mathcal{C} \times \mathcal{C}^{\operatorname{op}}.$$

Corollary

$$\begin{split} \textit{If} \ \mathfrak{F} \colon & \mathrm{Cat}_{\infty}^{\mathrm{p}} \to \mathcal{E} \ \textit{is a group-like additive functor then} \\ & \mathcal{F}(\mathsf{Q}_{1}(\mathcal{C}, \Omega)) \simeq \mathcal{F}(\mathcal{C}, \Omega) \times \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{F}(\mathcal{C}, \Omega) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \end{split}$$

$$\mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{F}(\mathsf{Hyp}(\mathcal{C})). \end{split}$$

4) d (

Additivity for the Grothendieck-Witt space

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive.

Additivity for the Grothendieck-Witt space

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting.

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting. Our approach is via cobordism ∞ -categories:

The fibration theorem

If $(\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ is a split Poincaré-Verdier projection then the induced functor $p_* : \operatorname{Cob}(\mathfrak{D}, \Phi) \to \operatorname{Cob}(\mathcal{E}, \Psi)$

is a bicartesian fibration.

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting. Our approach is via cobordism ∞ -categories:

The fibration theorem

If $(\mathcal{D}, \Phi) \to (\mathcal{E}, \Psi)$ is a split Poincaré-Verdier projection then the induced functor $p_*: \operatorname{Cob}(\mathcal{D}, \Phi) \to \operatorname{Cob}(\mathcal{E}, \Psi)$

is a bicartesian fibration.

When p_* is a bicatersian fibration every cobordism

$$(X,q) \leftarrow (W,\eta) \rightarrow (X',q')$$

in $\operatorname{Cat}^{\operatorname{b}}(\mathcal{E},\Psi)$ induces an adjunction between the fibers of p_* over (X,q) and (X',q').

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting. Our approach is via cobordism ∞ -categories:

The fibration theorem

If $(\mathfrak{D},\Phi) \to (\mathcal{E},\Psi)$ is a split Poincaré-Verdier projection then the induced functor

$$p_*{:}\operatorname{Cob}(\mathcal{D},\Phi)\to\operatorname{Cob}(\mathcal{E},\Psi)$$

is a bicartesian fibration.

When p_* is a bicatersian fibration every cobordism

$$(X,q) \leftarrow (W,\eta) \rightarrow (X',q')$$

in $\operatorname{Cat}^{\operatorname{b}}(\mathcal{E}, \Psi)$ induces an adjunction between the fibers of p_* over (X, q) and (X', q'). Since every adjunction induces a homotopy equivalence on realizations, the family of geometric realizations of fibers of p_* is constant up to homotopy over $\operatorname{Cob}(\mathcal{E}, \Psi)$.

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting. Our approach is via cobordism ∞ -categories:

The fibration theorem

If $(\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ is a split Poincaré-Verdier projection then the induced functor

$$p_*{:}\operatorname{Cob}(\mathcal{D},\Phi) \to \operatorname{Cob}(\mathcal{E},\Psi)$$

is a bicartesian fibration.

When p_* is a bicatersian fibration every cobordism

$$(X,q) \leftarrow (W,\eta) \rightarrow (X',q')$$

in $\operatorname{Cat}^{\operatorname{b}}(\mathcal{E},\Psi)$ induces an adjunction between the fibers of p_* over (X,q) and (X',q'). Since every adjunction induces a homotopy equivalence on realizations, the family of geometric realizations of fibers of p_* is constant up to homotopy over $\operatorname{Cob}(\mathcal{E},\Psi)$. It hence also coincides with the homotopy fibers of the induced map $|\operatorname{Cob}(\mathfrak{D},\Phi)| \to |\operatorname{Cob}(\mathcal{E},\Psi)|$.

Goal: prove that the functor $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ is additive. The analogous statement in the setting of exact categories with duality was proven by Schlichting. Our approach is via cobordism ∞ -categories:

The fibration theorem

If $(\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ is a split Poincaré-Verdier projection then the induced functor $p_{\mathfrak{a}} : \operatorname{Cob}(\mathfrak{D}, \Phi) \to \operatorname{Cob}(\mathcal{E}, \Psi)$

is a bicartesian fibration.

When p_* is a bicatersian fibration every cobordism

$$(X,q) \leftarrow (W,\eta) \rightarrow (X',q')$$

in $\operatorname{Cat}^{\operatorname{b}}(\mathcal{E},\Psi)$ induces an adjunction between the fibers of p_* over (X,q) and (X',q'). Since every adjunction induces a homotopy equivalence on realizations, the family of geometric realizations of fibers of p_* is constant up to homotopy over $\operatorname{Cob}(\mathcal{E},\Psi)$. It hence also coincides with the homotopy fibers of the induced map $|\operatorname{Cob}(\mathcal{D},\Phi)| \to |\operatorname{Cob}(\mathcal{E},\Psi)|$.

Corollary

The functors $(\mathcal{C}, \Omega) \mapsto |\operatorname{Cob}(\mathcal{C}, \Omega)|$ and $(\mathcal{C}, \Omega) \mapsto \mathcal{GW}(\mathcal{C}, \Omega)$ are additive.

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $Cob(\mathfrak{D}, \Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $\mathrm{Cob}(\mathfrak{D},\Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

Theorem (Barwick)

Let $p: \mathcal{D} \to \mathcal{E}$ be an exact functor which admits fully-faithful left and right adjoints. Then the functor $p_*: \operatorname{Span}(\mathcal{D}) \to \operatorname{Span}(\mathcal{E})$ is a bicartesian fibration.

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $Cob(\mathfrak{D}, \Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

Theorem (Barwick)

Let $p: \mathcal{D} \to \mathcal{E}$ be an exact functor which admits fully-faithful left and right adjoints. Then the functor $p_*: \operatorname{Span}(\mathcal{D}) \to \operatorname{Span}(\mathcal{E})$ is a bicartesian fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $Cob(\mathfrak{D}, \Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

Theorem (Barwick)

Let $p: \mathcal{D} \to \mathcal{E}$ be an exact functor which admits fully-faithful left and right adjoints. Then the functor $p_*: \operatorname{Span}(\mathcal{D}) \to \operatorname{Span}(\mathcal{E})$ is a bicartesian fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

Furthermore, a span $X \xleftarrow{\alpha} W \xrightarrow{\beta} Y$ in $\mathfrak D$ is p_* -cocartesian if and only if α is p-cortesian and β is p-cocartesian, and is p_* -cartesian if this statement holds with the role of α and β reversed.

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $\mathrm{Cob}(\mathfrak{D},\Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

Theorem (Barwick)

Let $p: \mathbb{D} \to \mathcal{E}$ be an exact functor which admits fully-faithful left and right adjoints. Then the functor $p_*: \operatorname{Span}(\mathbb{D}) \to \operatorname{Span}(\mathcal{E})$ is a bicartesian fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

Furthermore, a span $X \xleftarrow{\alpha} W \xrightarrow{\beta} Y$ in \mathfrak{D} is p_* -cocartesian if and only if α is p-cartesian and β is p-cocartesian, and is p_* -cartesian if this statement holds with the role of α and β reversed. The following lemma will allow us to refine p_* -(co)cartesian spans to cobordisms in the hermitian setting:

To given an idea of the proof, let us just indicate how one can find p_* -(co)cartesian edges in $\mathrm{Cob}(\mathfrak{D},\Phi)$. For this, we note that the fibration theorem has a non-hermitian precursor:

Theorem (Barwick)

Let $p: \mathbb{D} \to \mathcal{E}$ be an exact functor which admits fully-faithful left and right adjoints. Then the functor $p_*: \operatorname{Span}(\mathbb{D}) \to \operatorname{Span}(\mathcal{E})$ is a bicartesian fibration.

In fact, in the above situation p itself is also a bicartesian fibration.

Furthermore, a span $X \stackrel{\alpha}{\leftarrow} W \stackrel{\beta}{\rightarrow} Y$ in $\mathfrak D$ is p_* -cocartesian if and only if α is p-cartesian and β is p-cocartesian, and is p_* -cartesian if this statement holds with the role of α and β reversed. The following lemma will allow us to refine p_* -(co)cartesian spans to cobordisms in the hermitian setting:

Lemma

Let (p, ϑ) : $(\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ be a split Poincaré-Verdier projection and let β : $W \to Y$ be a p-cocartesian edge in \mathfrak{D} . Then the map $\Phi(Y) \to \Phi(W) \times_{\Psi(p(W))} \Psi(p(Y))$ is an equivalence.

Lemma

Let $(p, \vartheta) \colon (\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ be a split Poincaré-Verdier projection and let $\beta \colon W \to Y$ be a p-cocartesian edge in \mathfrak{D} . Then the map $\Phi(Y) \to \Phi(W) \times_{\Psi(p(W))} \Psi(p(Y))$ is an equivalence.

Lemma

Let $(p, \vartheta): (\mathfrak{D}, \Phi) \to (\mathcal{E}, \Psi)$ be a split Poincaré-Verdier projection and let $\beta: W \to Y$ be a p-cocartesian edge in \mathfrak{D} . Then the map $\Phi(Y) \to \Phi(W) \times_{\Psi(p(W))} \Psi(p(Y))$ is an equivalence.

Proof.

Let $g\colon \mathcal{E} \to \mathcal{D}$ be a fully-faithful left adjoint to p. Then an arrow $\beta\colon W \to Y$ is p-cocartesian if and only if the square

$$gp(W) \xrightarrow{gp(\beta)} gp(Y)$$

$$\downarrow^{\nu} \qquad \qquad \downarrow^{\nu}$$

$$W \xrightarrow{\beta} Y$$

is exact. By the identification $\Phi(g(-)) \simeq \Psi(-)$ it will suffice to show that Φ sends the above square to an exact square of spectra. Since Φ is quadratic, the obstruction to this is the spectrum

$$\begin{split} \mathbf{B}_{\Phi}(\mathsf{cof}[gp(\beta)], \mathsf{cof}[\nu]) &= \mathsf{hom}_{\mathbb{D}}(\mathsf{cof}[gp(\beta)], \mathbf{D}_{\Phi}\,\mathsf{cof}[\nu]) \\ &= \mathsf{hom}_{\mathcal{E}}(\mathsf{cof}[p(\beta)], \mathbf{D}_{\Psi}\,\mathsf{cof}[p(\nu)]) \quad = 0 \quad \Box \end{split}$$

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $Cob(\mathcal{D}, \Phi)$ as follows.

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

• We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

- We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .
- Using the previous lemma we conclude that the space of hermitian forms on $X \leftarrow W' \rightarrow Y'$ compatible with q, r and η is contractible.

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

- We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .
- Using the previous lemma we conclude that the space of hermitian forms on $X \leftarrow W' \rightarrow Y'$ compatible with q, r and η is contractible.
- Taking such a hermitian form (p, η', r') , we want to show that it is Poincaré in $Q_1(\mathcal{D}, \Phi)$, that is, that we obtain a cobordism.

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

- We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .
- Using the previous lemma we conclude that the space of hermitian forms on $X \leftarrow W' \rightarrow Y'$ compatible with q, r and η is contractible.
- Taking such a hermitian form (p, η', r') , we want to show that it is Poincaré in $Q_1(\mathcal{D}, \Phi)$, that is, that we obtain a cobordism. This is a consequence of the following observation:

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

- We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .
- Using the previous lemma we conclude that the space of hermitian forms on $X \leftarrow W' \rightarrow Y'$ compatible with q, r and η is contractible.
- Taking such a hermitian form (p, η', r') , we want to show that it is Poincaré in $Q_1(\mathcal{D}, \Phi)$, that is, that we obtain a cobordism. This is a consequence of the following observation:

The duality on $Q_1(\mathcal{D}, \Phi)$ preserves the full subcategory consisting of the spans which are cocartesian with respect to $Span(\mathcal{D}) \to Span(\mathcal{E})$.

Given a Poincaré object (X,q) in (\mathfrak{D},Φ) and a cobordism

$$(p(X), p(q)) \stackrel{\alpha}{\leftarrow} (W, \eta) \stackrel{\beta}{\rightarrow} (Y, r)$$

in (\mathcal{E}, Ψ) , we construct a cocartesian lift in $\mathrm{Cob}(\mathcal{D}, \Phi)$ as follows.

- We use that $p: \mathcal{D} \to \mathcal{E}$ is a bicartesian fibration to find a p-cartesian lift $\alpha': W' \to X$ of α and a p-cocartesian lift $\beta: W' \to Y'$ of β .
- Using the previous lemma we conclude that the space of hermitian forms on $X \leftarrow W' \rightarrow Y'$ compatible with q, r and η is contractible.
- Taking such a hermitian form (p, η', r') , we want to show that it is Poincaré in $Q_1(\mathcal{D}, \Phi)$, that is, that we obtain a cobordism. This is a consequence of the following observation:

The duality on $Q_1(\mathcal{D}, \Phi)$ preserves the full subcategory consisting of the spans which are cocartesian with respect to $Span(\mathcal{D}) \to Span(\mathcal{E})$.

• The unimoduarity of (p, η', r') can then be deduced from the unicity of cartesian and cocartesian lifts.

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

• $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

- $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.
- $\mathcal{GW}(Q_1(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})$.

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

- $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.
- $\mathcal{GW}(Q_1(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})$.

Applying additivity in the case of the metabolic sequence yields a fiber sequence

$$\mathcal{GW}(\mathcal{C}, \Omega^{[-1]}) \to \mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \to \mathcal{GW}(\mathcal{C}, \Omega)$$

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

- $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.
- $\mathcal{GW}(Q_1(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})$.

Applying additivity in the case of the metabolic sequence yields a fiber sequence

$$\mathfrak{GW}(\mathfrak{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathfrak{GW}(\mathfrak{C}, \Omega)$$

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

- $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.
- $\mathcal{GW}(Q_1(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})$.

Applying additivity in the case of the metabolic sequence yields a fiber sequence

$$\mathcal{GW}(\mathcal{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)$$

The Bott-Genauer sequence.

Summary

The functor $\mathrm{Cob}(-)$ sends split Poincaré-Verdier sequences to bicartesian fibrations \Rightarrow the functor $|\mathrm{Cob}(-)|$ is additive \Rightarrow the functor $\mathcal{GW}(-)$ is additive.

Corollary

- $\mathcal{GW}(\mathsf{Met}(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{K}(\mathcal{C})$.
- $\mathcal{GW}(Q_1(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})$.

Applying additivity in the case of the metabolic sequence yields a fiber sequence

$$\mathcal{GW}(\mathcal{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)$$

The space level Bott-Genauer sequence.

The space level Bott-Genauer sequence

$$\mathcal{GW}(\mathfrak{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathcal{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathfrak{C}, \Omega)$$

The space level Bott-Genauer sequence

$$\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathfrak{GW}(\mathfrak{C}, \mathfrak{P})$$

Definition

For a Poincaré $\infty\text{-category }(\mathfrak{C}, \mathfrak{P})$ define

$$\mathcal{U}(\mathcal{C}, \Omega) := \mathsf{fib}[\mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)]$$

$$\mathcal{V}(\mathfrak{C}, \mathfrak{P}) \coloneqq \mathsf{fib} \big[\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \big].$$

The space level Bott-Genauer sequence

$$\mathfrak{GW}(\mathfrak{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathfrak{GW}(\mathfrak{C}, \Omega)$$

Definition

For a Poincaré ∞ -category $(\mathfrak{C}, \mathfrak{P})$ define

$$\mathcal{U}(\mathcal{C}, \Omega) := \mathsf{fib}[\mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)]$$

$$\mathcal{V}(\mathfrak{C}, \mathfrak{P}) \coloneqq \mathsf{fib} \big[\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \big].$$

In the setting of forms over rings, these homotopy fibers measuring the gap between Grothendieck-Witt space and algebraic $\mathcal K$ -theory space were defined and studied by Karoubi.

The space level Bott-Genauer sequence

$$\mathcal{GW}(\mathcal{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)$$

Definition

For a Poincaré ∞ -category $(\mathfrak{C}, \mathfrak{P})$ define

$$\mathcal{U}(\mathcal{C}, \Omega) \coloneqq \mathsf{fib}[\mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)]$$

$$\mathcal{V}(\mathfrak{C}, \mathfrak{P}) \coloneqq \mathsf{fib} \big[\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \big].$$

In the setting of forms over rings, these homotopy fibers measuring the gap between Grothendieck-Witt space and algebraic $\mathcal K$ -theory space were defined and studied by Karoubi.

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

The space level Bott-Genauer sequence

$$\mathcal{GW}(\mathcal{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathcal{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)$$

Definition

For a Poincaré ∞ -category $(\mathfrak{C}, \mathfrak{P})$ define

$$\mathcal{U}(\mathcal{C}, \Omega) := fib[\mathcal{K}(\mathcal{C}) \xrightarrow{\text{hyp}} \mathcal{GW}(\mathcal{C}, \Omega)]$$

$$\mathcal{V}(\mathfrak{C}, \mathfrak{P}) \coloneqq \mathsf{fib} \big[\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \xrightarrow{\mathrm{fgt}} \mathfrak{K}(\mathfrak{C}) \big].$$

In the setting of forms over rings, these homotopy fibers measuring the gap between Grothendieck-Witt space and algebraic $\mathcal K$ -theory space were defined and studied by Karoubi.

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]}) \simeq \Omega \mathcal{GW}(\mathcal{C}, \Omega^{[1]})$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

 $\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{P}_{M}^{\mathrm{q}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{P}_{-M}^{\mathrm{q}})$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{I}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{I}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

- $\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{I}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{I}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$
- $(\mathcal{D}^{\mathbf{p}}(R), (\mathcal{P}_{M}^{\mathbf{s}})^{[2]}) \simeq (\mathcal{D}^{\mathbf{p}}(R), \mathcal{P}_{-M}^{\mathbf{s}})$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

- $\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$
- $\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathcal{P}_{M}^{\mathrm{s}})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathcal{P}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{I}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{I}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathfrak{P}^{\mathrm{gs}}_{M})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathfrak{P}^{\mathrm{ge}}_{-M})$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

- $\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{I}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{I}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$
- $\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$
- $\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathcal{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathcal{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{ge}}(R, -M)$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{q}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{q}}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{ge}}(R, -M)$$

$$\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathfrak{P}_{M}^{\mathrm{ge}})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathfrak{P}_{-M}^{\mathrm{gq}})$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{q}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{q}}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathbb D}^{\mathrm{p}}(R), ({\mathbb Y}_M^{\mathrm{s}})^{[2]}) \simeq ({\mathbb D}^{\mathrm{p}}(R), {\mathbb Y}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad {\mathcal V}^{\mathrm{s}}(R, M) \simeq \Omega {\mathcal U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{ge}}(R, -M)$$

$$\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathcal{Q}_{M}^{\mathrm{ge}})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathcal{Q}_{-M}^{\mathrm{gq}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{ge}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{gq}}(R, -M)$$

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{q}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{q}}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad {\mathcal V}^{\mathrm{s}}(R, M) \simeq \Omega {\mathcal U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathcal{D}^{\mathrm{p}}(R), (\mathcal{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathcal{D}^{\mathrm{p}}(R), \mathcal{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{ge}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{ge}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{gq}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{ge}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{gq}}(R, -M)$$

When $\frac{1}{2} \in R$ these claims are all equivalent to the classical Kaourbi's fundamental theorem.

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{q}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{q}}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{ge}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{ge}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{gq}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{ge}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{gq}}(R, -M)$$

When $\frac{1}{2} \in R$ these claims are all equivalent to the classical Kaourbi's fundamental theorem.

When 2 is not invertible, the last two statements apply to classical \mathcal{U} -and \mathcal{V} -theory of rings.

Karoubi's fundamental theorem for Grothendieck-Witt spaces

There is a natural equivalence

$$\mathcal{V}(\mathcal{C}, \Omega) \simeq \Omega \mathcal{U}(\mathcal{C}, \Omega^{[2]})$$

For R a ring and M an invertible module with involution over R one has natural equivalences of Poincaré ∞ -categories, yielding four types of fundamental theorems for rings:

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}^{\mathrm{q}}_{M})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}^{\mathrm{q}}_{-M}) \ \Rightarrow \ \mathcal{V}^{\mathrm{q}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{q}}(R, -M)$$

$$\bullet \ ({\mathcal D}^{\mathrm{p}}(R), ({\mathcal Q}_{M}^{\mathrm{s}})^{[2]}) \simeq ({\mathcal D}^{\mathrm{p}}(R), {\mathcal Q}_{-M}^{\mathrm{s}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{s}}(R, M) \simeq \Omega \mathcal{U}^{\mathrm{s}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{gs}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{ge}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{gs}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{ge}}(R, -M)$$

$$\bullet \ (\mathfrak{D}^{\mathrm{p}}(R), (\mathfrak{Q}_{M}^{\mathrm{ge}})^{[2]}) \simeq (\mathfrak{D}^{\mathrm{p}}(R), \mathfrak{Q}_{-M}^{\mathrm{gq}}) \quad \Rightarrow \quad \mathcal{V}^{\mathrm{ge}}(R, M) \simeq \Omega \mathfrak{U}^{\mathrm{gq}}(R, -M)$$

When $\frac{1}{2} \in R$ these claims are all equivalent to the classical Kaourbi's fundamental theorem.

When 2 is not invertible, the last two statements apply to classical \mathcal{U} -and \mathcal{V} -theory of rings. They give a generalization of Karoubi's fundamental theorem conjectured by Karoubi and Giffen.

Definition

For $(\mathfrak{C}, \mathfrak{P})$ Poincaré, a full stable subcategory $\mathcal{A} \subseteq \mathfrak{C}$ is called isotropic if

- Ω vanishes when restricted to A.
- the inclusion $\mathcal{A} \subseteq \mathcal{C}$ admits a right adjoint.

Definition

For (\mathcal{C}, Ω) Poincaré, a full stable subcategory $\mathcal{A} \subseteq \mathcal{C}$ is called *isotropic* if

- Ω vanishes when restricted to A.
- the inclusion $A \subseteq C$ admits a right adjoint.

For $\mathcal{A} \subseteq \mathcal{C}$ isotropic we have that

$$\mathcal{A}\subseteq\mathcal{A}^{\perp}=\big\{Y\in\mathcal{C}\mid \mathrm{B}_{\mathbb{P}}(X,Y)=0\;\forall X\in\mathcal{A}\big\}.$$

Definition

For (\mathcal{C}, Ω) Poincaré, a full stable subcategory $\mathcal{A} \subseteq \mathcal{C}$ is called *isotropic* if

- Ω vanishes when restricted to A.
- the inclusion $A \subseteq C$ admits a right adjoint.

For $A \subseteq \mathcal{C}$ isotropic we have that

$$\mathcal{A}\subseteq\mathcal{A}^{\perp}=\big\{Y\in\mathcal{C}\mid \mathrm{B}_{\mathbb{S}}(X,Y)=0\ \forall X\in\mathcal{A}\big\}.$$

The Verdier quotient $Hlgy(A) := A^{\perp}/A$ then acquires a canonical Poincaré structure, and we call it the *homology* of A.

Definition

For (\mathcal{C}, Ω) Poincaré, a full stable subcategory $\mathcal{A} \subseteq \mathcal{C}$ is called *isotropic* if

- Ω vanishes when restricted to A.
- the inclusion $A \subseteq C$ admits a right adjoint.

For $A \subseteq C$ isotropic we have that

$$\mathcal{A}\subseteq\mathcal{A}^{\perp}=\big\{Y\in\mathcal{C}\ \big|\ \mathrm{B}_{\mathbb{Y}}(X,Y)=0\ \forall X\in\mathcal{A}\big\}.$$

The Verdier quotient $Hlgy(\mathcal{A}) := \mathcal{A}^{\perp}/\mathcal{A}$ then acquires a canonical Poincaré structure, and we call it the *homology* of \mathcal{A} . \mathcal{A} is called a *Lagrangian* if $\mathcal{A}^{\perp} = \mathcal{A}$, i.e., if $Hlgy(\mathcal{A}) = 0$.

Definition

For (\mathcal{C}, Ω) Poincaré, a full stable subcategory $\mathcal{A} \subseteq \mathcal{C}$ is called *isotropic* if

- Ω vanishes when restricted to \mathcal{A} .
- the inclusion $A \subseteq C$ admits a right adjoint.

For $A \subseteq \mathcal{C}$ isotropic we have that

$$\mathcal{A}\subseteq\mathcal{A}^{\perp}=\big\{Y\in\mathcal{C}\mid \mathrm{B}_{\mathbb{S}}(X,Y)=0\ \forall X\in\mathcal{A}\big\}.$$

The Verdier quotient $Hlgy(\mathcal{A}) := \mathcal{A}^{\perp}/\mathcal{A}$ then acquires a canonical Poincaré structure, and we call it the *homology* of \mathcal{A} . \mathcal{A} is called a *Lagrangian* if $\mathcal{A}^{\perp} = \mathcal{A}$, i.e., if $Hlgy(\mathcal{A}) = 0$.

Example

- $\mathsf{Met}(\mathcal{C}, \Omega)$ admits a Lagrangian consisting of the equivalences $L \xrightarrow{\simeq} X$
- $Q_1(\mathcal{C}, \Omega)$ admits an isotropic subcategory consisting of the spans of the form $0 \leftarrow W \xrightarrow{\simeq} X$. Its homology is canonically equivalence to (\mathcal{C}, Ω) .
- $Q_n(\mathcal{C}, \Omega)$ admits an isotropic subcategory with homology $Q_{n-1}(\mathcal{C}, \Omega)$ consisting of the sequence of spans $0 \leftarrow 0 \rightarrow 0 \leftarrow ... \rightarrow 0 \leftarrow W \xrightarrow{\sim} X$.

Isotropic decomposition

Proposition

Let $(\mathfrak{C}, \mathfrak{P})$ be a Poincaré ∞ -categorywith an isotropic subcategory $\mathcal{A} \subseteq \mathfrak{C}$. Then for a group-like additive functor $\mathfrak{F} \colon \mathrm{Cat}_\infty^p \to \mathcal{E}$ there is a canonical decomposition

$$\mathfrak{F}(\mathfrak{C}, \mathfrak{P}) \simeq \mathfrak{F}(\mathsf{Hlgy}(\mathcal{A})) \times \mathfrak{F}(\mathsf{Hyp}(\mathcal{A})).$$

Isotropic decomposition

Proposition

Let $(\mathfrak{C}, \mathfrak{P})$ be a Poincaré ∞ -categorywith an isotropic subcategory $\mathcal{A} \subseteq \mathfrak{C}$. Then for a group-like additive functor $\mathfrak{F} \colon \mathrm{Cat}_\infty^p \to \mathcal{E}$ there is a canonical decomposition

$$\mathfrak{F}(\mathfrak{C}, \mathfrak{P}) \simeq \mathfrak{F}(\mathsf{Hlgy}(\mathcal{A})) \times \mathfrak{F}(\mathsf{Hyp}(\mathcal{A})).$$

Corollary

If $(\mathfrak{C}, \mathfrak{P})$ is a Poincaré ∞ -category with isotropic subcategory $\mathcal{A} \subseteq \mathfrak{C}$ then $\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \simeq \mathfrak{GW}(\mathsf{Hlgy}(\mathcal{A})) \times \mathfrak{K}(\mathcal{A}).$

Isotropic decomposition

Proposition

Let $(\mathfrak{C}, \mathfrak{P})$ be a Poincaré ∞ -categorywith an isotropic subcategory $\mathcal{A} \subseteq \mathfrak{C}$. Then for a group-like additive functor $\mathfrak{F} \colon \mathrm{Cat}_\infty^p \to \mathcal{E}$ there is a canonical decomposition

$$\mathcal{F}(\mathcal{C}, \Omega) \simeq \mathcal{F}(\mathsf{Hlgy}(\mathcal{A})) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{A})).$$

Corollary

If $(\mathfrak{C}, \mathfrak{P})$ is a Poincaré ∞ -category with isotropic subcategory $\mathcal{A} \subseteq \mathfrak{C}$ then $\mathfrak{GW}(\mathfrak{C}, \mathfrak{P}) \simeq \mathfrak{GW}(\mathsf{Hlgy}(\mathcal{A})) \times \mathfrak{K}(\mathcal{A}).$

Example

For every group-like additive functor $\mathfrak{F}\!\!:\! \mathrm{Cat}_\infty^p \to \mathcal{E}$ we have

$$\mathcal{F}(Q_n(\mathcal{C}, \Omega)) \simeq \mathcal{F}(\mathcal{C}, \Omega) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{C}))^n$$
.

In particular

$$\mathcal{GW}(Q_n(\mathcal{C}, \Omega)) \simeq \mathcal{GW}(\mathcal{C}, \Omega) \times \mathcal{K}(\mathcal{C})^n$$
.

Let $\mathcal{C} \xrightarrow{i} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a fiber sequence of stable ∞ -categories such that p admits a fully-faithful right adjoint $r: \mathcal{E} \to \mathcal{D}$.

Let $\mathcal{C} \xrightarrow{i} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a fiber sequence of stable ∞ -categories such that p admits a fully-faithful right adjoint $r: \mathcal{E} \to \mathcal{D}$.

 \Rightarrow the Poincaré ∞ -category $\mathsf{Hyp}(\mathcal{D})$ admits a Lagrangian inclusion $(i, r^{\mathrm{op}}) \colon \mathcal{C} \times \mathcal{E}^{\mathrm{op}} \to \mathcal{D} \times \mathcal{D}^{\mathrm{op}}.$

Let $\mathcal{C} \xrightarrow{i} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a fiber sequence of stable ∞ -categories such that p admits a fully-faithful right adjoint $r: \mathcal{E} \to \mathcal{D}$.

 \Rightarrow the Poincaré $\infty\text{-category Hyp}(\mathfrak{D})$ admits a Lagrangian inclusion

$$(i,r^{\operatorname{op}}){:}\, \mathcal{C} \times \mathcal{E}^{\operatorname{op}} \to \mathcal{D} \times \mathcal{D}^{\operatorname{op}}.$$

Corollary

If $\mathfrak{F}: \operatorname{Cat}^p_\infty \to \mathcal{E}$ is a group-like additive functor then

$$\mathfrak{F}(\mathsf{Hyp}(\mathfrak{D})) \simeq \mathfrak{F}(\mathsf{Hyp}(\mathfrak{C})) \times \mathfrak{F}(\mathsf{Hyp}(\mathcal{E})).$$

Let $\mathcal{C} \xrightarrow{i} \mathcal{D} \xrightarrow{p} \mathcal{E}$ be a fiber sequence of stable ∞ -categories such that p admits a fully-faithful right adjoint $r: \mathcal{E} \to \mathcal{D}$.

 \Rightarrow the Poincaré $\infty\text{-category Hyp}(\mathfrak{D})$ admits a Lagrangian inclusion

$$(i,r^{\operatorname{op}}) \colon \mathcal{C} \times \mathcal{E}^{\operatorname{op}} \to \mathcal{D} \times \mathcal{D}^{\operatorname{op}}.$$

Corollary

If $\mathfrak{F}: \operatorname{Cat}^p_{\infty} \to \mathcal{E}$ is a group-like additive functor then

$$\mathcal{F}(\mathsf{Hyp}(\mathfrak{D})) \simeq \mathcal{F}(\mathsf{Hyp}(\mathfrak{C})) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{E})).$$

Corollary (Waldhausen additivity)

$$\mathcal{K}(\mathcal{D}) \simeq \mathcal{K}(\mathcal{C}) \times \mathcal{K}(\mathcal{E}).$$

Extending the perspective:

Extending the perspective:

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

Extending the perspective:

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

• $\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]})$ is complete if \mathcal{F} is limit preserving, but not in general.

Extending the perspective:

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

- $\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]})$ is complete if \mathcal{F} is limit preserving, but not in general.
- $Cob(\mathcal{C}, \Omega) = Cob^{Pn}(\mathcal{C}, \Omega)$.

Extending the perspective:

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

- $\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]})$ is complete if \mathcal{F} is limit preserving, but not in general.
- $Cob(\mathcal{C}, \Omega) = Cob^{Pn}(\mathcal{C}, \Omega)$.
- \bullet If $\ensuremath{\mathfrak{F}}$ is additive and group-like then by isotropic decomposition

$$\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]}) \simeq \mathcal{F}(\mathcal{C}, \Omega^{[1]}) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{C}))^{\bullet}$$

is not just a Segal object, but a *groupoid object*, which is the action groupoid (known also as the bar construction) associated to the translation action of $\mathcal{F}(\mathsf{Hyp}(\mathfrak{C}))$ on $\mathcal{F}(\mathfrak{C}, \Omega^{[1]})$ via the map induced by the Poincaré functor $\mathsf{Hyp}(\mathfrak{C}) \to (\mathfrak{C}, \Omega^{[1]})$ sending $(X, Y) \mapsto X \oplus D_{\Omega^{[1]}} Y$.

Extending the perspective:

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

- $\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]})$ is complete if \mathcal{F} is limit preserving, but not in general.
- $Cob(\mathfrak{C}, \mathfrak{P}) = Cob^{Pn}(\mathfrak{C}, \mathfrak{P}).$
- ullet If ${\mathcal F}$ is additive and group-like then by isotropic decomposition

$$\mathcal{F}Q_{\bullet}(\mathcal{C}, \Omega^{[1]}) \simeq \mathcal{F}(\mathcal{C}, \Omega^{[1]}) \times \mathcal{F}(\mathsf{Hyp}(\mathcal{C}))^{\bullet}$$

is not just a Segal object, but a *groupoid object*, which is the action groupoid (known also as the bar construction) associated to the translation action of $\mathcal{F}(\mathsf{Hyp}(\mathfrak{C}))$ on $\mathcal{F}(\mathfrak{C}, \Omega^{[1]})$ via the map induced by the Poincaré functor $\mathsf{Hyp}(\mathfrak{C}) \to (\mathfrak{C}, \Omega^{[1]})$ sending $(X,Y) \mapsto X \oplus D_{\Omega^{[1]}}Y$. It is complete in this case if and only if $\mathcal{F}(\mathsf{Hyp}(\mathfrak{C})) = 0$.

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{FQ}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

The generalized fibration theorem

For every additive $\mathfrak{F}: \operatorname{Cat}^p_\infty \to \mathcal{S}$ the functor $\operatorname{Cob}^\mathfrak{F}(-)$ sends split Poincaré-Verdier projections to bicartesian fibrations.

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

The generalized fibration theorem

For every additive $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathbb{S}$ the functor $\mathrm{Cob}^\mathfrak{F}(-)$ sends split Poincaré-Verdier projections to bicartesian fibrations.

Corollary

For every additive $\mathfrak{F}: \operatorname{Cat}^p_\infty \to \mathbb{S}$ the functor $|\operatorname{Cob}^\mathfrak{F}(-)|$ is additive.

Cobordisms categories with coefficients

Let $\mathcal{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor and (\mathcal{C}, Ω) a Poincaré ∞ -category. Then the simplicial space $\mathcal{F}\mathsf{Q}_\bullet(\mathcal{C}, \Omega^{[1]})$ is a Segal space. Define $\mathrm{Cob}^\mathcal{F}(\mathcal{C}, \Omega)$ to be the associated ∞ -category.

The generalized fibration theorem

For every additive $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathbb{S}$ the functor $\mathrm{Cob}^\mathfrak{F}(-)$ sends split Poincaré-Verdier projections to bicartesian fibrations.

Corollary

For every additive $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathbb{S}$ the functor $|\mathrm{Cob}^{\mathfrak{F}}(-)|$ is additive.

⇒ We can iterate this construction.

From spaces to spectra

For $\mathcal{F}: Cat^p_{\infty} \to \mathcal{S}$ additive the commutative square

induces a natural map

$$\mathcal{F}(\mathcal{C}, \Omega) \to \Omega |\mathrm{Cob}^{\mathcal{F}}(\mathcal{C}, \Omega)|.$$

From spaces to spectra

For $\mathcal{F}: \operatorname{Cat}^p_{\infty} \to \mathcal{S}$ additive the commutative square

$$\begin{array}{ccc} X & & & & & & & & \\ \stackrel{\cap}{\sim} & & & & & \\ (\mathcal{C}, \Omega) & & & & & \\ & \downarrow & & & \downarrow & \\ \downarrow & & & & \downarrow & \\ 0 & & & & & \\ \end{array}$$

induces a natural map

$$\mathcal{F}(\mathcal{C}, \Omega) \to \Omega |\mathrm{Cob}^{\mathcal{F}}(\mathcal{C}, \Omega)|.$$

Lemma

Let $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathbb{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\mathrm{Cob}^\mathfrak{F}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega |\mathrm{Cob}^\mathfrak{F}(-)|$ is an equivalence.

Lemma

Let $\mathfrak{F} \colon \mathrm{Cat}^p_\infty \to \mathbb{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\mathrm{Cob}^\mathfrak{F}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega |\mathrm{Cob}^\mathfrak{F}(-)|$ is an equivalence.

Lemma

Let $\mathfrak{F}: \operatorname{Cat}^p_\infty \to \mathcal{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\operatorname{Cob}^{\mathfrak{F}}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega|\operatorname{Cob}^{\mathfrak{F}}(-)|$ is an equivalence.

Proof.

• Since $\mathcal F$ is group-like $\mathcal FQ_{ullet}(\mathcal C,\Omega^{[1]})$ is the action groupoid of $\mathcal F(\mathsf{Hyp}(\mathcal C))$ acting on $\mathcal F(\mathcal C,\Omega^{[1]})$, and its geometric realization is hence a model for the cofiber of $\mathcal F(\mathsf{Hyp}(\mathcal C)) \to \mathcal F(\mathcal C,\Omega^{[1]})$ in E_∞ -groups.

Lemma

Let $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\mathrm{Cob}^{\mathfrak{F}}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega |\mathrm{Cob}^{\mathfrak{F}}(-)|$ is an equivalence.

Proof.

- Since \mathcal{F} is group-like $\mathcal{FQ}_{\bullet}(\mathcal{C},\Omega^{[1]})$ is the action groupoid of $\mathcal{F}(\mathsf{Hyp}(\mathcal{C}))$ acting on $\mathcal{F}(\mathcal{C},\Omega^{[1]})$, and its geometric realization is hence a model for the cofiber of $\mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \to \mathcal{F}(\mathcal{C},\Omega^{[1]})$ in E_{∞} -groups.
- Since \mathcal{F} is additive and group-like we have $\mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]}))$ and hence we can identify this cofiber with the cofiber of the map $\mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]})) \to \mathcal{F}(\mathcal{C}, \Omega^{[1]})$.

Lemma

Let $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\mathrm{Cob}^{\mathfrak{F}}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega |\mathrm{Cob}^{\mathfrak{F}}(-)|$ is an equivalence.

Proof.

- Since $\mathcal F$ is group-like $\mathcal FQ_{ullet}(\mathcal C,\Omega^{[1]})$ is the action groupoid of $\mathcal F(\mathsf{Hyp}(\mathcal C))$ acting on $\mathcal F(\mathcal C,\Omega^{[1]})$, and its geometric realization is hence a model for the cofiber of $\mathcal F(\mathsf{Hyp}(\mathcal C)) \to \mathcal F(\mathcal C,\Omega^{[1]})$ in E_∞ -groups.
- Since \mathcal{F} is additive and group-like we have $\mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]}))$ and hence we can identify this cofiber with the cofiber of the map $\mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]})) \to \mathcal{F}(\mathcal{C}, \Omega^{[1]})$.
- To finish the proof we need to show that the sequence

$$\mathcal{F}(\mathcal{C}, \Omega) \to \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]})) \to \mathcal{F}(\mathcal{C}, \Omega^{[1]})$$

is a fiber sequence of E_{∞} -groups.

Lemma

Let $\mathfrak{F}: \mathrm{Cat}^p_\infty \to \mathcal{S}$ be an additive functor. If \mathfrak{F} is group-like then $|\mathrm{Cob}^{\mathfrak{F}}(-)|$ is group-like and $\mathfrak{F} \Rightarrow \Omega |\mathrm{Cob}^{\mathfrak{F}}(-)|$ is an equivalence.

Proof.

- Since \mathcal{F} is group-like $\mathcal{FQ}_{\bullet}(\mathcal{C},\Omega^{[1]})$ is the action groupoid of $\mathcal{F}(\mathsf{Hyp}(\mathcal{C}))$ acting on $\mathcal{F}(\mathcal{C},\Omega^{[1]})$, and its geometric realization is hence a model for the cofiber of $\mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \to \mathcal{F}(\mathcal{C},\Omega^{[1]})$ in E_{∞} -groups.
- Since \mathcal{F} is additive and group-like we have $\mathcal{F}(\mathsf{Hyp}(\mathcal{C})) \simeq \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]}))$ and hence we can identify this cofiber with the cofiber of the map $\mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]})) \to \mathcal{F}(\mathcal{C}, \Omega^{[1]})$.
- To finish the proof we need to show that the sequence

$$\mathcal{F}(\mathcal{C}, \Omega) \to \mathcal{F}(\mathsf{Met}(\mathcal{C}, \Omega^{[1]})) \to \mathcal{F}(\mathcal{C}, \Omega^{[1]})$$

is a fiber sequence of E_{∞} -groups.

• This follows from the additivity of \mathcal{F} applied in the case of metabolic sequence of $(\mathcal{C}, \Omega^{[1]})$.

Summary

For \mathcal{F} additive and group-like we have an equivalence $\mathcal{F} \stackrel{\sim}{\Rightarrow} \Omega |\mathrm{Cob}^{\mathcal{F}}(-)|$.

Summary

For \mathcal{F} additive and group-like we have an equivalence $\mathcal{F} \stackrel{\sim}{\Rightarrow} \Omega |\mathrm{Cob}^{\mathcal{F}}(-)|$.

Definition

For $\mathfrak{F} \colon\! \mathbf{Cat}^\mathrm{p}_\infty \to \mathbb{S}$ additive and group-like, define

$$\mathbb{C}\mathrm{ob}^{\mathcal{F}} \colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{S}p \qquad (\mathfrak{C}, \mathfrak{P}) \mapsto (\mathfrak{F}_{0}(\mathfrak{C}, \mathfrak{P}), \mathfrak{F}_{1}(\mathfrak{C}, \mathfrak{P}), ...,)$$

with $\mathcal{F}_0 = \mathcal{F}$ and $\mathcal{F}_n(\mathcal{C}, \Omega) \coloneqq |\mathrm{Cob}^{\mathcal{F}_{n-1}}(\mathcal{C}, \Omega)|$ for $n \ge 1$. Structure maps $\mathcal{F}_n(\mathcal{C}, \Omega) \xrightarrow{\simeq} \Omega \mathcal{F}_{n+1}(\mathcal{C}, \Omega)$ given as above.

Summary

For \mathcal{F} additive and group-like we have an equivalence $\mathcal{F} \stackrel{\sim}{\Rightarrow} \Omega |\mathrm{Cob}^{\mathcal{F}}(-)|$.

Definition

For $\mathcal{F}{:}\operatorname{Cat}^p_\infty \to \mathbb{S}$ additive and group-like, define

$$\mathbb{C}\mathrm{ob}^{\mathcal{F}} \colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{S}p \qquad (\mathcal{C}, \mathcal{Y}) \mapsto (\mathcal{F}_{0}(\mathcal{C}, \mathcal{Y}), \mathcal{F}_{1}(\mathcal{C}, \mathcal{Y}), ...,)$$

with $\mathcal{F}_0 = \mathcal{F}$ and $\mathcal{F}_n(\mathcal{C}, \Omega) \coloneqq |\mathrm{Cob}^{\mathcal{F}_{n-1}}(\mathcal{C}, \Omega)|$ for $n \ge 1$. Structure maps $\mathcal{F}_n(\mathcal{C}, \Omega) \xrightarrow{\simeq} \Omega \mathcal{F}_{n+1}(\mathcal{C}, \Omega)$ given as above.

Observation

For any group-like additive functor $\mathcal{F}: \operatorname{Cat}^p_\infty \to \mathcal{S}$ we have that $\operatorname{\mathbb{C}ob}^{\mathcal{F}}: \operatorname{Cat}^p_\infty \to \mathcal{S}p$ is additive and $\Omega^\infty \operatorname{\mathbb{C}ob}^{\mathcal{F}} \simeq \mathcal{F}$.

Summary

For \mathcal{F} additive and group-like we have an equivalence $\mathcal{F} \stackrel{\simeq}{\Rightarrow} \Omega | \mathrm{Cob}^{\mathcal{F}}(-)|$.

Definition

For $\mathcal{F}{:}\operatorname{Cat}^p_\infty \to \mathbb{S}$ additive and group-like, define

$$\mathbb{C}\mathrm{ob}^{\mathcal{F}} \colon \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{S}p \qquad (\mathfrak{C}, \mathfrak{P}) \mapsto (\mathfrak{F}_{0}(\mathfrak{C}, \mathfrak{P}), \mathfrak{F}_{1}(\mathfrak{C}, \mathfrak{P}), ...,)$$

with $\mathcal{F}_0 = \mathcal{F}$ and $\mathcal{F}_n(\mathcal{C}, \Omega) \coloneqq |\mathrm{Cob}^{\mathcal{F}_{n-1}}(\mathcal{C}, \Omega)|$ for $n \ge 1$. Structure maps $\mathcal{F}_n(\mathcal{C}, \Omega) \xrightarrow{\simeq} \Omega \mathcal{F}_{n+1}(\mathcal{C}, \Omega)$ given as above.

Observation

For any group-like additive functor $\mathfrak{F} \colon \mathrm{Cat}^p_\infty \to \mathcal{S}$ we have that $\mathbb{C}\mathrm{ob}^{\mathfrak{F}} \colon \mathrm{Cat}^p_\infty \to \mathcal{S}p$ is additive and $\Omega^\infty \mathbb{C}\mathrm{ob}^{\mathfrak{F}} \simeq \mathfrak{F}$.

⇒ A group-like additive functor has a distinguished additive delooping.

Summary

For \mathcal{F} additive and group-like we have an equivalence $\mathcal{F} \stackrel{\circ}{\Rightarrow} \Omega | \mathrm{Cob}^{\mathcal{F}}(-)|$.

Definition

For $\mathcal{F}: Cat^p_{\infty} \to \mathbb{S}$ additive and group-like, define

$$\mathbb{C}\mathrm{ob}^{\mathfrak{F}}\!\!:\! \mathrm{Cat}^{\mathrm{p}}_{\infty} \to \mathcal{S}p \qquad (\mathfrak{C}, \mathfrak{P}) \mapsto (\mathfrak{F}_{0}(\mathfrak{C}, \mathfrak{P}), \mathfrak{F}_{1}(\mathfrak{C}, \mathfrak{P}), ...,)$$

with $\mathcal{F}_0 = \mathcal{F}$ and $\mathcal{F}_n(\mathcal{C}, \Omega) \coloneqq |\mathrm{Cob}^{\mathcal{F}_{n-1}}(\mathcal{C}, \Omega)|$ for $n \ge 1$. Structure maps $\mathcal{F}_n(\mathcal{C}, \Omega) \xrightarrow{\simeq} \Omega \mathcal{F}_{n+1}(\mathcal{C}, \Omega)$ given as above.

Observation

For any group-like additive functor $\mathcal{F}: \operatorname{Cat}^p_\infty \to \mathcal{S}$ we have that $\operatorname{\mathbb{C}ob}^{\mathcal{F}}: \operatorname{Cat}^p_\infty \to \mathcal{S}p$ is additive and $\Omega^\infty \operatorname{\mathbb{C}ob}^{\mathcal{F}} \simeq \mathcal{F}$.

⇒ A group-like additive functor has a distinguished though not unique additive delooping.

Definition

Definition

We define the *Grothendieck-Witt spectrum* functor $GW: Cat^p_{\infty} \to \mathcal{S}p$ by $GW(\mathcal{C}, \Omega) := \mathbb{C}ob^{\mathcal{GW}}(\mathcal{C}, \Omega)$.

• $\mathsf{GW}(\mathsf{-})$ is an additive functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spectra.

Definition

- \bullet GW(-) is an additive functor from $\operatorname{Cat}^p_\infty$ to spectra.
- It is the hermitian analogue of the *algebraic* K-spectrum $K(\mathcal{C})$, which is a connective spectrum such that $\Omega^{\infty} K(\mathcal{C}) = \mathcal{K}(\mathcal{C})$.

Definition

- $\mathsf{GW}(\mathsf{-})$ is an additive functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spectra.
- It is the hermitian analogue of the *algebraic* K-spectrum $K(\mathcal{C})$, which is a connective spectrum such that $\Omega^{\infty} K(\mathcal{C}) = \mathcal{K}(\mathcal{C})$.
- By contract, $GW(\mathcal{C}, \Omega)$ is not connective in general.

Definition

- $\mathsf{GW}(\mathsf{-})$ is an additive functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spectra.
- It is the hermitian analogue of the *algebraic* K-spectrum $K(\mathcal{C})$, which is a connective spectrum such that $\Omega^{\infty} K(\mathcal{C}) = \mathcal{K}(\mathcal{C})$.
- By contract, $\mathsf{GW}(\mathfrak{C}, \mathfrak{P})$ is not connective in general.
- Schlichting defined a Grothendieck-Witt spectrum in the setting of $\mathbb{Z}[\frac{1}{2}]$ -linear dg-categories. Our construction agrees with his in this context.

Definition

- $\mathsf{GW}(\mathsf{-})$ is an additive functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spectra.
- It is the hermitian analogue of the *algebraic* K-spectrum K(\mathcal{C}), which is a connective spectrum such that Ω^{∞} K(\mathcal{C}) = $\mathcal{K}(\mathcal{C})$.
- By contract, $GW(\mathcal{C}, \Omega)$ is not connective in general.
- Schlichting defined a Grothendieck-Witt spectrum in the setting of $\mathbb{Z}[\frac{1}{2}]$ -linear dg-categories. Our construction agrees with his in this context.
- A different type of a Grothendieck-Witt spectrum was defined by Schlichting in the setting of exact categories. We believe it to be equivalent to a localizing variant of GW in the Poincaré setting.

Definition

We define the *Grothendieck-Witt spectrum* functor $GW: Cat^p_{\infty} \to \mathcal{S}p$ by $GW(\mathcal{C}, \Omega) := \mathbb{C}ob^{\mathcal{GW}}(\mathcal{C}, \Omega)$.

- $\mathsf{GW}(\mathsf{-})$ is an additive functor from $\mathrm{Cat}^\mathrm{p}_\infty$ to spectra.
- It is the hermitian analogue of the *algebraic* K-spectrum $K(\mathcal{C})$, which is a connective spectrum such that $\Omega^{\infty} K(\mathcal{C}) = \mathcal{K}(\mathcal{C})$.
- By contract, $GW(\mathcal{C}, \Omega)$ is not connective in general.
- Schlichting defined a Grothendieck-Witt spectrum in the setting of $\mathbb{Z}[\frac{1}{2}]$ -linear dg-categories. Our construction agrees with his in this context.
- A different type of a Grothendieck-Witt spectrum was defined by Schlichting in the setting of exact categories. We believe it to be equivalent to a localizing variant of GW in the Poincaré setting.

Example

For the hyperbolic Poincaré ∞ -category $\mathsf{Hyp}(\mathfrak{C})$ one has a canonical equivalence $\mathsf{GW}(\mathsf{Hyp}(\mathfrak{C})) \simeq \mathsf{K}(\mathfrak{C})$.

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

$$\mathsf{GW}(\mathfrak{C}, \mathfrak{Q}^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathsf{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathsf{GW}(\mathfrak{C}, \mathfrak{Q})$$

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

$$\mathsf{GW}(\mathfrak{C}, \mathfrak{Q}^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathsf{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathsf{GW}(\mathfrak{C}, \mathfrak{Q})$$

Since $K(\mathcal{C})$ is connective we obtain for i < 0 an isomorphism $GW_i(\mathcal{C}, \Omega) \cong GW_{i-1}(\mathcal{C}, \Omega^{[-1]})$.

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

$$\mathsf{GW}(\mathfrak{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathsf{K}(\mathfrak{C}) \xrightarrow{\mathrm{hyp}} \mathsf{GW}(\mathfrak{C}, \Omega)$$

Since $K(\mathcal{C})$ is connective we obtain for i < 0 an isomorphism $GW_i(\mathcal{C}, \Omega) \cong GW_{i-1}(\mathcal{C}, \Omega^{[-1]})$. Shifting Ω and arguing by induction we get that for n < 0 we have

$$\mathsf{GW}_n(\mathfrak{C}, \mathfrak{P}) \cong \mathsf{GW}_{n-1}(\mathfrak{C}, \mathfrak{P}^{[1]}) \cong \ldots \cong \mathsf{GW}_{-1}(\mathfrak{C}, \mathfrak{P}^{[n-1]})$$

$$\cong \operatorname{coker} \bigl[\mathsf{K}_0(\mathcal{C}) \to \mathsf{GW}_0(\mathcal{C}, \Omega^{[n]}) \bigr] \cong \mathsf{L}_0\bigl(\mathcal{C}, \Omega^{[n]}\bigr) = \mathsf{L}_n\bigl(\mathcal{C}, \Omega\bigr).$$

Applying additivity in the case of the metabolic sequence yields

The Bott-Genauer sequence (spectral version)

$$\mathsf{GW}(\mathcal{C}, \Omega^{[-1]}) \xrightarrow{\mathrm{fgt}} \mathsf{K}(\mathcal{C}) \xrightarrow{\mathrm{hyp}} \mathsf{GW}(\mathcal{C}, \Omega)$$

Since $K(\mathcal{C})$ is connective we obtain for i < 0 an isomorphism $GW_i(\mathcal{C}, \Omega) \cong GW_{i-1}(\mathcal{C}, \Omega^{[-1]})$. Shifting Ω and arguing by induction we get that for n < 0 we have

$$\mathsf{GW}_n(\mathfrak{C}, \mathfrak{P}) \cong \mathsf{GW}_{n-1}(\mathfrak{C}, \mathfrak{P}^{[1]}) \cong \ldots \cong \mathsf{GW}_{-1}(\mathfrak{C}, \mathfrak{P}^{[n-1]})$$

$$\cong \operatorname{coker} \bigl[\mathsf{K}_0(\mathcal{C}) \to \mathsf{GW}_0(\mathcal{C}, \Omega^{[n]}) \bigr] \cong \mathsf{L}_0\bigl(\mathcal{C}, \Omega^{[n]}\bigr) = \mathsf{L}_n\bigl(\mathcal{C}, \Omega\bigr).$$

Corollary

The negative homotopy groups of $GW(\mathcal{C}, \Omega)$ are the negative L-groups.

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn \Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn\Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow \mathsf{GW}$ exhibits GW as the initial additive functor to spectra under $\Sigma^{\infty} Pn$.

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn \Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow \mathsf{GW}$ exhibits GW as the initial additive functor to spectra under $\Sigma^{\infty} Pn$.

Both of these theorems can be deduced from the following key statement:

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn \Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow \mathsf{GW}$ exhibits GW as the initial additive functor to spectra under $\Sigma^{\infty} Pn$.

Both of these theorems can be deduced from the following key statement:

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{FQ}_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathbb{S})$ of space valued additive functors.

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn \Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow \mathsf{GW}$ exhibits GW as the initial additive functor to spectra under $\Sigma^{\infty} Pn$.

Both of these theorems can be deduced from the following key statement:

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{F}Q_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathbb{S})$ of space valued additive functors.

 $\Rightarrow \mathcal{GW}$ is the loop-suspension of Pn in $\operatorname{\mathsf{Fun}}^{\operatorname{add}}(\operatorname{Cat}^p_\infty, \mathbb{S})$.

Theorem (Universality for \mathcal{GW})

The natural transformation $Pn \Rightarrow \mathcal{GW}$ exhibits \mathcal{GW} as the initial group-like additive functor to spaces under Pn.

Theorem (Universality for GW)

The natural transformation $\Sigma^{\infty} Pn \Rightarrow \mathsf{GW}$ exhibits GW as the initial additive functor to spectra under $\Sigma^{\infty} Pn$.

Both of these theorems can be deduced from the following key statement:

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{F}Q_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathbb{S})$ of space valued additive functors.

 \Rightarrow \mathcal{GW} is the loop-suspension of Pn in $\operatorname{Fun}^{\operatorname{add}}(\operatorname{Cat}^p_\infty, \mathcal{S})$. GW is the suspension spectrum of \mathcal{GW} .

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{FQ}_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathcal{S})$ of space valued additive functors.

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{F}Q_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathbb{S})$ of space valued additive functors.

Define Poincaré ∞ -categories $Null_n(\mathcal{C}, \Omega)$ as the fiber of

$$i_0^* \colon \mathsf{Q}_{n+1} (\mathcal{C}, \mathfrak{P}) \to \mathsf{Q}_0 (\mathcal{C}, \mathfrak{P}) = \big(\mathcal{C}, \mathfrak{P} \big),$$

where $i_0: [0] \rightarrow [n]$ has image $\{0\}$.

Proposition (Q-construction is suspension)

The operation $\mathfrak{F}\mapsto |\mathrm{Cob}^{\mathfrak{F}}(-)|=|\mathfrak{FQ}_{\bullet}(\mathfrak{C},\Omega^{[1]})|$ realizes the suspension in the ∞ -category $\mathsf{Fun}^{\mathrm{add}}(\mathrm{Cat}^{\mathrm{p}}_{\infty},\mathbb{S})$ of space valued additive functors.

Define Poincaré ∞ -categories $Null_n(\mathcal{C}, \Omega)$ as the fiber of

$$i_0^* \colon \mathsf{Q}_{n+1} \big(\mathcal{C}, \mathcal{Y} \big) \to \mathsf{Q}_0 \big(\mathcal{C}, \mathcal{Y} \big) = \big(\mathcal{C}, \mathcal{Y} \big),$$

where $i_0:[0] \to [n]$ has image $\{0\}$. One obtains a square of simplicial Poincaré ∞ -categories

$$(\mathcal{C}, \mathcal{Y}) \longrightarrow \mathsf{Null}_{\bullet}(\mathcal{C}, \mathcal{Y}^{[1]})$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathsf{Q}_{\bullet}(\mathcal{C}, \mathcal{Y}^{[1]})$$

where the right vertical map is restricted from the face maps $d_0: \mathbb{Q}_{\bullet+1}(\mathcal{C}, \Omega^{[1]}) \to \mathbb{Q}_{\bullet}(\mathcal{C}, \Omega^{[1]})$.

Goal: show that if $\mathfrak{F}{:}\operatorname{Cat}^p_\infty\to \mathbb{S}$ is additive then

$$\begin{split} \mathcal{F}(-) &\longrightarrow |\mathcal{F}\mathsf{Null}_{\bullet}(-^{[1]})| \simeq |\mathrm{Cob}_{0/}^{\mathcal{F}}(-)| \simeq * \\ & \qquad \qquad \downarrow \\ & \qquad \qquad \downarrow \\ & \qquad \qquad * \longrightarrow |\mathcal{F}\mathsf{Q}_{\bullet}(-^{[1]})| \simeq |\mathrm{Cob}^{\mathcal{F}}(-)| \end{split}$$

is cocartesian in $\operatorname{Fun}^{\operatorname{add}}(\operatorname{Cat}^p_\infty, \mathbb{S})$. Here the top right corner is contractible since $\operatorname{Cob}^{\mathfrak{F}}_{0/}(\mathfrak{C}, \mathfrak{P})$ has an initial object.

Goal: show that if $\mathfrak{F}{:}\operatorname{Cat}^p_\infty\to \mathbb{S}$ is additive then

$$\begin{split} \mathfrak{F}(-) &\longrightarrow |\mathfrak{F} \mathsf{Null}_{\bullet}(-^{[1]})| \simeq |\mathrm{Cob}_{0/}^{\mathfrak{F}}(-)| \simeq * \\ & \qquad \qquad \downarrow \\ & \qquad \qquad \downarrow \\ * & \longrightarrow |\mathfrak{F} \mathsf{Q}_{\bullet}(-^{[1]})| \simeq |\mathrm{Cob}^{\mathfrak{F}}(-)| \end{split}$$

is cocartesian in $\operatorname{Fun}^{\operatorname{add}}(\operatorname{Cat}^p_\infty, \mathbb{S})$. Here the top right corner is contractible since $\operatorname{Cob}^{\mathfrak{F}}_{0/}(\mathfrak{C}, \mathfrak{P})$ has an initial object.

Idea

The operation $\mathcal{F} \mapsto \mathcal{F} Q_n(-)$ has a right adjoint $\mathcal{F} \mapsto \mathcal{F} Q^n(-)$, given by the *dual* Q-construction.

Idea

The operation $\mathcal{F} \mapsto \mathcal{F} Q_n(-)$ has a right adjoint $\mathcal{F} \mapsto \mathcal{F} Q^n(-)$, given by the *dual Q-construction*.

Idea

The operation $\mathcal{F} \mapsto \mathcal{F} Q_n(-)$ has a right adjoint $\mathcal{F} \mapsto \mathcal{F} Q^n(-)$, given by the *dual* Q-construction.

• $Q^1(\mathcal{C}, \Omega)$ is the Poincaré ∞ -category whose objects are *cospans* with hermitian structure given by $\Omega_1([X \to W \leftarrow X'] = \Omega(X) \coprod_{\Omega(W)} \Omega(X')$.

Idea

The operation $\mathcal{F} \mapsto \mathcal{F} Q_n(-)$ has a right adjoint $\mathcal{F} \mapsto \mathcal{F} Q^n(-)$, given by the *dual Q-construction*.

- $Q^1(\mathcal{C}, \Omega)$ is the Poincaré ∞ -category whose objects are *cospans* with hermitian structure given by $\Omega_1([X \to W \leftarrow X'] = \Omega(X) \coprod_{\Omega(W)} \Omega(X')$.
- Similarly, $Q^n(\mathcal{C}, \Omega)$ can be described as the ∞ -category of diagrams encoding sequences of n composable cospans with hermitian structure given by a colimit on the diagram.

Idea

The operation $\mathcal{F} \mapsto \mathcal{F} Q_n(-)$ has a right adjoint $\mathcal{F} \mapsto \mathcal{F} Q^n(-)$, given by the *dual* Q-construction.

- $Q^1(\mathcal{C}, \Omega)$ is the Poincaré ∞ -category whose objects are *cospans* with hermitian structure given by $\Omega_1([X \to W \leftarrow X'] = \Omega(X) \coprod_{\Omega(W)} \Omega(X')$.
- Similarly, $Q^n(\mathcal{C}, \Omega)$ can be described as the ∞ -category of diagrams encoding sequences of n composable cospans with hermitian structure given by a colimit on the diagram.
- There is also a dual to $\operatorname{Null}_n(\mathcal{C}, \Omega)$ which sits in a split Poincaré-Verdier sequence of the form

$$(\mathcal{C}, \Omega) = Q^{0}(\mathcal{C}, Q) \rightarrow Q^{n+1}(\mathcal{C}, \Omega) \rightarrow \mathsf{Null}^{n}(\mathcal{C}, \Omega)$$

Mapping into a test object ${\mathcal G}$ and using adjunction, it will suffice to show that for ${\mathcal G}$ additive the square

$$\operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Q}}^{\bullet}(-^{[-1]})| \longrightarrow \operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Null}}^{\bullet}(-^{[-1]})]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{\mathcal{G}}(-)$$

is a fiber square of additive functors.

Mapping into a test object ${\mathcal G}$ and using adjunction, it will suffice to show that for ${\mathcal G}$ additive the square

$$\operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Q}}^{\bullet}(-^{[-1]})| \longrightarrow \operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Null}}^{\bullet}(-^{[-1]})]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{\mathcal{G}}(-)$$

is a fiber square of additive functors. Since totalizations preserve pullback fiber squares we can check this levelwise.

Mapping into a test object $\mathcal G$ and using adjunction, it will suffice to show that for $\mathcal G$ additive the square

$$\operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Q}}^{\bullet}(-^{[-1]})| \longrightarrow \operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Null}}^{\bullet}(-^{[-1]})]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{\mathcal{G}}(-)$$

is a fiber square of additive functors. Since totalizations preserve pullback fiber squares we can check this levelwise.

Claim

$$\mathcal{G}(Q^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathsf{Null}^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathcal{C}, \Omega)$$

is a fiber sequence.

Mapping into a test object $\mathcal G$ and using adjunction, it will suffice to show that for $\mathcal G$ additive the square

$$\operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Q}}^{\bullet}(-^{[-1]})| \longrightarrow \operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Null}}^{\bullet}(-^{[-1]})]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{\mathcal{G}}(-)$$

is a fiber square of additive functors. Since totalizations preserve pullback fiber squares we can check this levelwise.

Claim

$$\mathcal{G}(Q^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathsf{Null}^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathcal{C}, \Omega)$$

is a fiber sequence.

Since g is additive, it will suffice to verify that

$$\mathsf{Q}^n(\mathcal{C}, \mathfrak{Q}^{[-1]}) \to \mathsf{Null}^n(\mathcal{C}, \mathfrak{Q}^{[-1]}) \to (\mathcal{C}, \mathfrak{Q})$$

is split Poincaré-Verdier sequence.

Mapping into a test object ${\mathcal G}$ and using adjunction, it will suffice to show that for ${\mathcal G}$ additive the square

$$\operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Q}}^{\bullet}(-^{[-1]})| \longrightarrow \operatorname{Tot}[\operatorname{\mathcal{G}}\operatorname{\mathsf{Null}}^{\bullet}(-^{[-1]})]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{\mathcal{G}}(-)$$

is a fiber square of additive functors. Since totalizations preserve pullback fiber squares we can check this levelwise.

Claim

$$\mathcal{G}(Q^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathsf{Null}^n(\mathcal{C}, \Omega^{[-1]})) \to \mathcal{G}(\mathcal{C}, \Omega)$$

is a fiber sequence.

Since g is additive, it will suffice to verify that

$$\mathsf{Q}^n(\mathcal{C}, \Omega^{[-1]}) \to \mathsf{Null}^n(\mathcal{C}, \Omega^{[-1]}) \to (\mathcal{C}, \Omega)$$

is split Poincaré-Verdier sequence. This can be deduced from the dual statement by applying to general principles, but can also be verified by hand once all definitions are unwind.