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O(N) linear sigma model
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-
O(N) linear sigma model

O(N) linear sigma model:

N
N = ep( / Z|V¢|2 Zf—l—:/v(Z(Df)zdx)D(b
j=1

where ® = (®4,...,®y) is the (vector-valued) field.
o N =1, &) model from quantum field

e Physical results of large N: [Stanley 67, Wilson 73, Gross 74, t'Hooft 74,
Witten 80]......

e Mathematical results of large N: [Kupiainen 80], [Billionnet, Renouard 82],
[Ferdinand, Gurau, Perez-Sanchez, Vignes-Tourneret 22], [Lévy 10],
[Chatterjee 16, 19]...

Stochastic quantization on T, d = 2,3:
1N
_ 2
Lo == &0 + V2,
j=1

L=0—A+m; (f,-)lNzl: independent space-time white noises.
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Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model

N
1
Lb; = - Z D7D + V2, 0;(0) = ¢
=1
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o The dynamical linear sigma model
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Lb; = - Z D7D + V2, 0;(0) = ¢
=1

e The limiting equation
LV; = —E[VV; +v2¢,  W;(0) = vy,
Distributional dependent SPDE

Theorem [Shen, Smith, Zhu, Z. 20]

Suppose that d =2 and (¢, 1);) are independent and have the same law and for
p>1E|¢; —i||P_. — 0, as N = oo.
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Limiting equation and convergence of the dynamics when d = 2

o The dynamical linear sigma model

N
1
Lb; = - Z D7D + V2, 0;(0) = ¢
=1

e The limiting equation
LV; = —E[VV; +v2¢,  W;(0) = vy,
Distributional dependent SPDE

Theorem [Shen, Smith, Zhu, Z. 20]

Suppose that d =2 and (¢, 1);) are independent and have the same law and for
p>1E[¢; —¢ill-_. = 0, as N = oco. It holds that for t > 0,
EHCD,'(t) — W;(t)”%z — 0 and ||¢,' — \U,'HCTC—l —P 0, as N — oo.

o Mean field limit/ Propagation of chaos
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Convergence of invariant measure (field)

o O(N) linear sigma model:
1 1 & m 1 (n ,)\2
N 2 2 2
_ 1 _[1 62+ TN o2 L ;( q>.) - dx | Do
v CNexp< /szjz_;w J|+2;J+4N J;’ x> ,

o v: Gaussian free field N'(0,(m — A)™1)
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Convergence of invariant measure (field)

e O(N) linear sigma model:

N N
N _ 2, M 2, 1 2\%.
v p</ Z|V¢| 2;¢j+w(;¢j).dx>m
o v: Gaussian free field N'(0,(m — A)™1)

Theorem [Shen, Smith, Zhu, Z. 20/Shen, Zhu, Z. 21]
Ford =2,3
o vN'/ form a tight set of probability measures on C=: % for k> 0.
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Convergence of invariant measure (field)

o O(N) linear sigma model:

N N
N _ 2, M 2, 1 2\%.
v p</ Z|vq>| 2;¢j+w(;¢j).dx>m
o v: Gaussian free field N'(0,(m — A)™1)

Theorem [Shen, Smith, Zhu, Z. 20/Shen, Zhu, Z. 21]
Ford =2,3
o vN'/ form a tight set of probability measures on C=: % for k> 0.

e For m > mg, pNsi converges to v; and uk converges to v X -+ X v, as

N — co. Furthermore, Wo (v, 1) < N~z
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Large N limit of Observables
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O(N) invariant Observables

Formally,

1N
— 02 0.
v
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|
O(N) invariant Observables

Formally,
1 2.
NZ.(D,-. —0.
i=1

Observables:

WZ ’ Nn/zi(ﬁ:d’%)n“

i=

Since ®; — Z; with Z; ~ N(0,(m — A)™1), it is natural to ask

L Cp2 — s 2._d 7z, 2\9
Nlinw\ﬁzg.cb Nlinoofz Z Z ~ N(0,2C?)7

1
2 = . 2\n ._d .=zn.
N—>oo N”/2 (Z(b - NII_I;nOO N"/2 : (E Z,) =927
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|
O(N) invariant Observables

Formally,
1 ¢ b2
NZ.(D,-. —0.
i=1

Observables:

WZ ’ Nn/zi(ﬁ:d’%)n“

=

Since ®; — Z; with Z; ~ N(0,(m — A)™1), it is natural to ask

lim —Z:CDZ = lim —Z 7% =9 2 ~ N(0,2C?)?
=1

N—o0 \/> N—o0 \/>
1 N
2 _ . 2yn ._d .zn. 9
A /\/n/z (Zq’ =M N2 '(; Zp)n =2
Questions:
Large N limit of the observables? J
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Large N limit of Observables
Set :(®2)" = (vazl <1>,2>": .Fixd=2and m> mg.

Theorem. Large N limit of Observables

° (ﬁ :®2: )y converge in law in H™" for any £ > 0 to a mean zero Gaussian
field Q with covariance G(x — y) determined by

C?+G+G=2C? C=(m-A)",
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Large N limit of Observables
Set :(®2)" = (vazl <1>,2)": .Fixd=2and m> mg.

Theorem. Large N limit of Observables

° (ﬁ :®2: )y converge in law in H™" for any £ > 0 to a mean zero Gaussian
field Q with covariance G(x — y) determined by

C?+G+G=2C? C=(m-A)",
o % :(®?)% converges in law to

Q% = |@O(Q§ —2C3(0)) =:9% — C?xG(0) .

e Forn=(n,....,n,) eN" meN, as N — oo,
1 . 2\ny. 1 . 2\Nm.
{ (G @5 o (@00 )}
converge jointly in law to (:Q™: ¢,..., :Q"™: ¢)in (H™")™ for k > 0 with

Q" = @O(zcg(o))"ﬂHn((zcg(O))—WQE) neN.
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Step 1. Uniform estimates from stochastic quantization

Stochastic quantization on T?:
L
LD = E 2. .
q)i—*N ¢J¢’+\/§§”
j=1

L=0,—A+m; (&)N,: independent space-time white noises.

Uniform estimates from SPDEs
For/>0, neN, k>0

o] @) <
s e[, ) <n
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-
Step 2. Dyson—Schwinger equations
Dyson—Schwinger equations (IBP):

SF(®)
E(6¢1(x)

) =E((m— 2)01()F(®)) + %]E(F(CD) ®10%(x): ).

=
/C(X—Z)E(g(';(?:)))dz = E(d)l(X)F(CD))—F% / C(X—z)]E(F(d)) O 2 (z))dz
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-
Step 2. Dyson—Schwinger equations

Dyson—Schwinger equations (IBP):

E(ggff))) =E((m - A)®:(x)F(®)) + %E(F(cb) ®10%(x): ).
/CX 2)E 5¢1 )))d 7E(¢1(X /CX Z)]E ¢1¢2: (Z))dz

Choosing F(®) = ®1(y1) :®% (y2) and x = y;

2C(n — Y )E(1(1)01(12) ) = E(:03: (1) 9 (32))

j% / Cln — 2)E(F(®) 10102 (2))dz
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Step 2. Dyson—Schwinger equations

Dyson—Schwinger equations (IBP):

E(ﬁgfi))) =E((m - A)®:(x)F(®)) + %E(F(cb) ®10%(x): ).
/CX 2)E 5¢1( )))d 7E(¢1(X /CX Z)]E (®) 0107 (Z))dz

Choosing F(®) = ®1(y1) :®% (y2) and x = y;

2C(n — Y )E(1(1)01(12) ) = E(:03: (1) 9 (32))

+% / Clys — z)]E(F(d)) b, 02 (z))dz
= For
G(y1,y2) = lim lIE( 0% () 0% ()/2))7
N—oo N
G+ C?x G =2C>
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Step 3. Explicit solutions for recursive relation

k
. 1
f(yiy oy yk) = I\Ill_r;nOo 7Nk/2E<H 0% (y;)).
i=1
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Step 3. Explicit solutions for recursive relation

k
. 1
f(yiy oy yk) = N||_r>noo WE(H 0% (y;)).
i=1
Recusive relation

k
fio+ Cx o= 2C%(y1 — yj)fi2,
j=2
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Step 3. Explicit solutions for recursive relation

k
. 1
f(yiy oy yk) = I\Ill_r;nOo WE(H P2 (y;)).
i=1
Recusive relation

k
fio+ Cx o= 2C%(y1 — yj)fi2,

j=2
= f,b =G and
k/2
fuyr, -5 y) = ZH B (Yr(2j-1), Y=(2j))s Kk € 2N,
T j=1
where 7 runs through pairing permutations of {1,..., k}.
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Step 3. Explicit solutions for recursive relation

k
. 1
f(yiy oy yk) = I\Ill_r;nOo 7Nk/2E<H 0% (y;)).
i=1

Recusive relation

k
fio+ Cx o= 2C%(y1 — yj)fi2,

j=2
= fh =G and
k/2
fk(ylv"'7y/< ZH& Yr(2j-1)> y7r(21)) kezN)
T j=1
where 7 runs through pairing permutations of {1,..., k}.
. 2. . .
= Nlinoo N2 :®<: is Gaussian.
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General recursive relation

Set for n = (ny,..., ng),

k

. 1 .
e o) = fim B (T1H0%) ()
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General recursive relation

Set for n = (ny,..., ng),

k

fok(V1s -y yk) = ||m NZ,1HI/2 (’1_[1 (®2)": )

Recusive relation

ﬁu,k(}’17~-~7}/k)+/C2(Y1—Z)fﬁ,k+1(Z,Y1,-~-,Yk)dZ

k
Z )ﬁlj, (y].v"‘vyk)a

j=
withfi=(1,m —1,nm,....,n) and nj=(n —1,m,...,nj_1,nj— 1, njq,...,n).
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k
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Recusive relation

ﬁu,k(}’17~-~7}/k)+/C2(Y1—Z)fﬁ,k+1(Z,Y1,-~-,Yk)dZ

k
Z )ﬁlj, (y].v"‘vyk)a

Jj=
withfi=(1,m —1,nm,....,n) and nj=(n —1,m,...,nj_1,nj— 1, njq,...,n).
v
=
I|m ®2)" =:0™ ..
N—o0 N"/2 ( ) <
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1/N expansion
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1/N expansion

Set

ka(y1,~--7)/k) N"/Q (H ¢.2 yl)
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|
1/N expansion

Set

ka(y17'-'ayk Nk/2 (H ¢2 }’: )

Theorem (1/N expansion)

Forp>0
kl k,1
N _ZWFH Np+1Rp+1v k € 2N,
and
- 1 k,2 k,2
N __ s
N = ON"+1/2F” +NP+3/2RP+1, ke2N -1,
n=

where FK1 Fk2 only depend on the Green's function of Gaussian free field and

IRl IRy s S 1,

with the proportional constant independent of N.
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Graph notations

/C(X—Z)E(:;I;l(?:)))d —E(Cbl(x /C X— z)IE () Db (z))dz.

We denote C by a line, and single / double / triple wavy lines represent &1, ﬁdﬂ
1 2
and \de)ld) .
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Graph notations

/C(X—Z)E(:;I;l(?:)))d —E(Cbl(x /C X— z)]E () Db (z))dz.

We denote C by a line, and single / double / triple wavy lines represent &1, ﬁdﬂ
1 2
and \de)ld) .
. . I-\ . .C’ . . .. .
+ T = e ( + O T+ \ ) +()

Denote K = (I 4+ C?x)~1 by a blue line:

. . B [T Uas ] i [ l\ [ )

= 2 + o + N + ()
. . ( . . (a) . . %.
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Idea of Proof

@ Two types of IBP:

N_lk/z I+ C2)E (H 02 (y;) ) -

55 CE (H 9 ( y,)+0(f)

e (H 0,02 H 2 (v))

2 k
- mcm - XQ)E(H 1% (x;) H :®? (y,-)) + O(LN).

= Two types of graphs/IBP
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Idea of Proof

@ Two types of IBP:

N_lk/z I+C2 (H 0% (i) ) = N-(k—2)/2 (H ¢2 )/I))""O(\/N)

M (H 1,02 H 2 (v))

N

1 : 1
= WC(X;L —XQ)]E(H 0% (XJ)H 0% (y,-)) + O(ﬁ)

j=1 i=1
= Two types of graphs/IBP
@ Repeat the IBP procedure multiple times to reduce the number of ®2? in each
graph. = ﬁ expansion. (Similar as in [Shen, Zhu, Z. 21] for ®3)
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Transfer to a tree

How to estimate each graph?
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Transfer to a tree

How to estimate each graph?

/C(XZ)E((?gl(z)))dz - E(cbl(x)F(CD))Jr%/C(x—z)]E(F(CD) b, b2 (z))dz.

L — L uy . 105

\]/

A A

A A

Clx —y) =E(Z2(x)Z(y))-
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Next order SPDEs
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Next order SPDEs

Stochastic quantization of O(N) model vV
L
— 2 Y+ V28,
j=1
Stochastic quantization of GFF v
LZ; = V2.

Theorem (Next order SPDEs)

In the stationary setting, v N(®; — Z;) converges to the stationary solution of

L’u,- = 7),‘,
where {P1,..., Pk} is stationary process with the time marginal distribution
{X19,...,Xk9}.

Here X;,i =1,...,k, and Q are independent, X; =7 Z; and Q is the large N limit
of 1 P2
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Further Questions:

e How about d = 3? Tightness of ﬁ :®2: is known in [Shen, Zhu, Z. 21]

o Large N problem for other models?
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Thank you |
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